Propeller Aircraft Interior Noise Model

Utilization Study and Validation

(NASA-CR-172428) PROFELLER ALECRAFT INTERIOR NOISE MODEL UTILIZATION STUDY AND VALIDATION (Pope (L. L.)) 248 p CSCL 20A N87-11576

Unclas G3/71 43849

L.D. Pope

L.D.POPE, PH.D., P.E./CONSULTING ENGINEER The Woodlands, TX 77380

32756

CONTRACT NAS1-17281 September 1984

Langley Research Center Hampton, Virginia 23665 NASA Contractor Report 172428

Propeller Aircraft Interior Noise Model

Utilization Study and Validation

L.D. Pope

L.D.POPE, PH.D., P.E./CONSULTING ENGINEER The Woodlands, TX 77380

CONTRACT NAS1-17281 September 1984

Langley Research Center Hampton. Virginia 23665

TABLE OF CONTENTS

		Page
SUMM	ARY	. 1
INTR	ODUCTION	2
2.1	The PAIN Model	3
2.2	PAIN Program Description	7
2.3	Report Organization	8
SCAL	E-MODEL TESTS AND COMPARISONS	10
3.1	Test Configuration	15
	3.1.1 Fuselage	15
	3.1.2 Trim	16
	3.1.3 Propeller	17
3.2	Description of Tests	17
3.3	Measurement Results	21
	3.3.1 Loss factors	21
	3.3.2 Propeller noise	24
	3.3.3 Interior sound levels	24
3.4	Computer Simulation of Scale-Model Tests	43
	3.4.1 Fuselage modeling	49
	3.4.2 Propeller modeling	53
•	3.4.3 Propeller noise predictions and	
	comparisons	56
3.5	Test Comparisons	71
	3.5.1 Structural damping	71
	3.5.2 Acoustic loss factors	74
	3.5.3 Interior sound levels	76
	INTR 2.1 2.2 2.3 SCAL 3.1 3.2 3.4	2.2 PAIN Program Description 2.3 Report Organization SCALE-MODEL TESTS AND COMPARISONS 3.1 Test Configuration 3.1.1 Fuselage 3.1.2 Trim 3.1.3 Propeller 3.2 Description of Tests 3.3 Measurement Results 3.3.1 Loss factors 3.3.2 Propeller noise 3.3.3 Interior sound levels 3.4.1 Fuselage modeling 3.4.2 Propeller modeling 3.4.2 Propeller modeling 3.4.3 Propeller noise predictions and comparisons 3.5 Test Comparisons 3.5.1 Structural damping 3.5.2 Acoustic loss factors

TABLE OF CONTENTS (Continued)

		Page
4.0	PROGRAM UTILIZATION: FULL SCALE AIRCRAFT	89
	4.1 Modeling of the Aircraft	89
	4.2 Modeling for Cabin and Fuselage Modes	96
	4.2.1 Cabin	96
	4.2.2 Fuselage	97
	4.3 Modal Characteristics of Typical Airplanes .	105
	4.3.1 Acoustic Modes	105
	4.3.2 Structural Modes	107
	4.4 Computation Times	115
5.0	FLIGHT TEST COMPARISONS	118
	5.1 Description of Aircraft	118
,	5.2 Test Program	121
	5.2.1 Interior Measurements	124
	5.2.2 Space-Average Levels	127
	5.3 Computer Simulation of Flight Tests	137
	5.3.1 ANOPP Prediction Methodology	137
	5.3.2 Predicted Exterior Levels	140
	5.3.3 Fuselage and Cabin Modeling	151
	5.3.4 PAIN Input and Output Data	151
	5.4 Comparisons to Flight Test Results	
	5.5 Understanding Sidewall Transmission	_
6.0	FINDINGS AND CONCLUSIONS	166
	6.1 Use of the PAIN Program	. 167
	6.2 PAIN Validation Status	. 167

TABLE OF CONTENTS (Continued)

	Page
REFERENCES	169
APPENDIX A	170
Analytical Modification of PAIN Program Changes Control Card Changes	
APPENDIX B	183
Scale Model Predictions	
APPENDIX C	203
Modal Characteristics Business Aircraft Small Body Aircraft Narrow Body Aircraft	
APPENDIX D	228
Flight Test Predictions	

LIST OF FIGURES

Figur	e No.	Page
1.	Propeller Aircraft Interior Noise Model	4
2.	Propeller and Fuselage Surface Point Geometry	5
3.	Grid Used for Propeller Noise Predictions	6
4.	Model Test Facility	11
5•	Fuselage Model	12
6.	Floor Assembly	13
7•	Cross-Section of Test Cylinder Showing Trim	14
8.	Propeller Tests	19
9•	Free Field Propeller Tests	20
10.	Microphone Locations for Blocked Pressure	•
	Measurements	22
11.	Measured Free Field Noise-Propeller at 3000 RPM .	25
12.	Measured Free Field Noise-Propeller at 4000 RPM .	26
13.	Measured Free Field Noise-Propeller at 5000 RPM .	27
14.	Spectrum of Free Field Propeller Noise at	
	Microphone 1	28
15.	Phase Measurements, 4000 RPM	29
16.	Phase Measurements, 5000 RPM	30
17.	Typical Interior Spectrum	31
18.	Axial Variation of Average Sound Pressure	
	Level by Major Subvolume (3000 RPM)	44
19.	Axial Variation of Average Sound Pressure	
	Level by Major Subvolume (4000 RPM)	45
20.	Axial Variation of Average Sound Pressure	
	Level by Major Subvolume (5000 RPM)	46
21.	Measured Sound Levels Inside Model Fuselage	
	Induced by Propeller	48
22.	Typical Pressure Signature and the PAIN	
	Program Fourier Representation	57
23.	Comparison of Propeller Noise Predictions	•
,	and Measurements, 3000 RPM	62

LIST OF FIGURES (Continued)

Figur	e No.	Page
24.	Comparison of Propeller Noise Predictions	
	and Measurements, 4000 RPM	63
25.	Comparison of Propeller Noise Predictions	
	and Measurements, 5000 RPM	64
26.	Propeller Tones Phase Prediction, 3000 RPM	65
27.	Propeller Tones Phase Prediction, 4000 RPM	66
28.	Propeller Tones Phase Prediction, 5000 RPM	67
29.	Measured Free Field and Blocked Sound Levels	
	Induced by Propeller	69
30 .	Measured and Predicted Blocked Sound Levels	
	Induced by Propeller on Test Cylinder	70
31.	Predicted and Measured Structural Loss Factors	
•	of Fuselage with Trim Installed, η_{π} =0.13	73
32.	Predicted and Measured Acoustic Loss Factors	
33•	Measured and Predicted Levels Inside Model	
	Fuselage Induced by Propeller	77
34•	Measured and Predicted Sound Levels, Blocked	
	Field Limited to 4 dB Maximum Increase	78
35•	Measured and Predicted Sound Levels, Blocked	
	Field=4 dB (Max), Critically Damped Trim Panel .	87
36.	Business/Commuter Aircraft	90
37•	Small Body Aircraft	91
38 •	Narrow Body Aircraft-Propfan Configuration	92
39•	Variation of Overall Free Field Propeller	
	Levels	95
40.	Cabin Floor Angles	98
41.	Typical Aircraft Construction	102
42.	Cabin of Aircraft Showing Seating and Micro-	
. ~	phone Locations	119
45•	Microphone Sweep Path for Space Average (About	
	15 Sec/Circuit Traversed Twice)	125

LIST OF FIGURES (Continued)

Figure	e No.	Page
44•	Typical Interior Measurement	130
45.	Amplitude Comparison, Full Blade vs. Compact	
	Chord Formulations	138
46.	Phase Comparison	139
47•	Phase Comparison When Adjusted to Means $arphi_{ m H}$	141
48.	Exterior Levels (Free Field), Flight Run No. 10 .	143
49.	Phase (Free Field), Flight Run No. 10	144
50.	Exterior Levels (Free Field), Flight Run No. 11.	146
51.	Phase (Free Field), Flight Run No. 11	147
52.	Exterior Levels (Free Field), Flight Run No. 12.	149
53•	Phase (Free Field), Flight Run No. 12	150
54•	Effect of Varying Loss Factor, $\eta_{_{ar{T}}}$ on Trim	
	Factor $\tau_{\pm} = c^{\mathbf{W}} ^2$	153
55•	Space-Average Sound Levels Inside Aircraft @	
	238 KIAS (Altitude=5000 ft.)	158
56.	Space-Average Sound Levels Inside Aircraft @	
	216 KIAS (Altitude=5000 ft.)	159
57•		
710	165 KIAS (Altitude=5000 ft.)	160
58.	Comparison of Predictions and Measurements	
) • •	Without Assumed Bias Corrections	162
	"441044 11541114 5444 4444 4444 4 4 4 4 4 4 4	

LIST OF TABLES

Table	No.	Page
1.	Measured Acoustic and Structural Loss Factors	23
2.	Interior Measurements - 3000 RPM, Harmonic	
	No. 1 (150 Hz)	32
3.	Interior Measurements - 4000 RPM, Harmonic) –
,	No. 1 (200 Hz)	35
4.	Interior Measurements - 5000 RPM, Harmonic	
1.4	No. 1 (250 Hz)	38
5.	Measured Space Average Sound Pressure Levels,	
	Entire Cabin Space (Above Floor)	47
6.	Input Data Used to Simulate Scale Model Tests	51
7•	ANOPP Predictions of Propeller Noise, Grid	
, ,	Line $\ell = 1, 0.762 \text{ m}$ Dia., 3 Bladed Hartzell	
	Propeller @ 3000 RPM	58
8.	ANOPP Predictions of Propeller Noise, Grid	
	Line $\ell=1,0.762$ m Dia., 3 Bladed Hartzell	
	Propeller @ 4000 RPM	59
9.	ANOPP Predictions of Propeller Noise, Grid	
-	Line $\ell=1,0.762$ m Dia., 3 Bladed Hartzell	
	Propeller @ 5000 RPM	60
10.	Predicted Versus Measured Space Average	
	Sound Pressure Levels	79
11.	Sample Statistics and Acceptance Regions	
	for Interior Sound Levels (Table 10)	82
12.	Predicted Versus Measured Space Average	
	Sound Pressure Levels	86
13.	Selected Fuselage Characteristics	99
14.	Program Run-Times (Typical)	116
15.	Flight Tests	123
16.	Interior Measurements	128
17.	Differences Between Average Sound Levels	
	in Forward and Middle Subvolumes	132

LIST OF TABLES (Continued)

Table	No.	Page
18.	Results of Hypothesis Tests	133
19.	Measured Space Averages and Confidence Limits	136
20.	Exterior Levels in Flight Run No. 10 (ANOPP	
	Compact Chord, free field, $\ell=1$)	142
21.	Exterior Levels in Flight Run No. 11 (ANOPP	
	Compact Chord, free field, $\ell=1$)	145
22.	Exterior Levels in Flight Run No. 12 (ANOPP	•
	Compact Chord, free field, $\ell=1$)	148
23.	Predicted Versus Measured Space Average	
	Sound Pressure Levels in Flight	156
24.	Sample Statistics and Acceptance Regions	
	for Interior Sound Levels (Table 23)	157
25.	Predictions with High Frequency Formulation	164

1.0 SUMMARY

This report considers the utilization and the validation of a computer program designed for aircraft interior noise prediction. The program, entitled PAIN, permits (in theory) predictions of sound levels inside propeller driven aircraft arising from sidewall transmission. The objective of the present work is to determine the practicality of making predictions for various airplanes and the extent of the program's capabilities. The ultimate purpose is to discern the quality of predictions for tonal levels inside an aircraft occurring at the propeller blade passage frequency and its harmonics. This effort involves three tasks:

- 1) program validation through comparisons of predictions with scale-model test results.
- 2) development of utilization schemes for large (full scale) fuselages, and
- 3) validation through comparisons of predictions with measurements taken in flight tests on a turboprop aircraft.

Findings should enable future users of the program to efficiently undertake and correctly interpret predictions.

2.0 INTRODUCTION

PAIN (an acronym for Propeller Aircraft Interior Noise) is a computer program that has been developed for predicting sound levels inside an airplane caused by the rotation of a propeller (of any design) alongside. PAIN can calculate the tonal levels in the cabin space occurring at the propeller blade passage frequency and its harmonics.

PAIN mechanizes an analytical model that can be found in Reference (1). The program's Users' Manual, Ref. (2), contains a basic overview of the mechanization and specifies the input data requirements. There are some features of the PAIN model that make it unique in interior noise work:

- 1) it requires a precise description of the propeller noise signature (pressure field) on the fuselage skin,
- 2) fuselage sidewall dynamic restraint offered by a structurally integral stiffened floor in a ring-stringer stiffened cabin shell is included, and
- 3) the acoustic modes of the complex cabin configuration (with floor partition) are utilized; cabin acoustic and fuselage structural modal losses are computed using the sidewall trim properties.

Theoretical developments, experiments, and validation studies that preceded PAIN and culminated in its invention are documented in Refs. (3) through (6). Some preliminary validation of PAIN for propeller noise prediction is given in Appendix E of Ref. (1). However the work reported herein should be considered the fundamental validation of the model. Here, the quality of PAIN interior noise predictions is explored through

more extensive comparisons with scale-model and flight tests' results. The primary goal is to develop insight into the use of PAIN as a tool to make reliable full-scale aircraft predictions.

2.1 The PAIN Model

The elements of the PAIN model include a fuselage and a propeller (Figures 1 and 2). The fuselage consists of a cylinder stiffened by ring frames and stringers, and a floor that is structurally an integral part of the fuselage. The interior surface of the cabin (sidewall) is finished out with a trim consisting of insulation covered with a lining. The propeller rotates about an axis parallel to the center line of the fuselage. PAIN will predict the space average sound pressure levels in the cabin space at each of the harmonics of the propeller (up to a maximum of ten (10) harmonics).

PAIN works with the pressure time histories (signatures) as defined over the fuselage at a number of closely spaced points on a grid that lies in the fuselage skin (Fig. 3). The pressures can be specified at up to 160 points on the upper quarter surface of the fuselage nearest the propeller. Fourier series are used to define the amplitudes and phases of each harmonic (at each location). PAIN then generates data for an identical grid on the lower quarter surface of the fuselage nearest the propeller (using the data input for the upper grid). The propeller data must be generated with a propeller noise prediction program such as PROPFAN (7) or NASA ANOPP (Aircraft Noise Prediction Program) (8).

Structural properties of the cylinder and floor are required as input data to compute the fuselage structural modes

FIGURE 2. PROPELLER AND FUSELAGE SURFACE POINT GEOMETRY [1]

(resonance frequencies and mode shapes). Associated structural loss factors must be input if the cabin is bare, but if trim is installed, the required modal loss factors are computed for the particular trim installation (estimates for the bare fuselage may still be input).

Similarly, acoustic modal properties of the cabin space (resonance frequencies, mode shapes, and loss factors) are calculated from input data specifying the cabin shape (floor angle, θ_0 , of Figure 1, and the cabin length) and the trim properties.

Transmission and absorption characteristics of the trim (at a given frequency) are computed using input data for the wave impedance and complex acoustic wavenumber in the insulation, and the trim lining surface weight and its loss factor (theoretically as measured installed).

A step-by-step procedure to be followed in parameterizing the interior noise model is given in Section 3.0 of Ref. (2). Elaboration on the procedure and on the preparation of input data for full scale aircraft predictions is a major focus of this report.

2.2 PAIN Program Description

The main program PAIN computes and outputs the interior sound levels. It requires (as input) data that are generated by four auxiliary programs. One of the auxiliary programs calculates the acoustic modal properties of the cabin, two other programs the structural modal properties of the fuselage, and a fourth the propeller noise field.

The acoustic modes are calculated with the program CYL2D which

determines the two-dimensional (cabin cross-section) modal characteristics (floor present), conditions the results and writes the data on a file (tape) for recall by the main program. PAIN uses the data to generate the complete three-dimensional modal set required for the noise predictions.

The structural modal data are generated with a program called MRPMOD whose output is also to a file (tape) read by PAIN. In addition to its own input data, MRPMOD reads two files (tapes) that are used for output from the fundamental structural program MRP. MRP computes the mode shapes and resonance frequencies, and must be run twice, once for the symmetric modes and once for the antisymmetric modes. The two files (tapes) created by these runs are read by MRPMOD, which conditions these data for PAIN.

As stated, the propeller noise data must be calculated with a propeller noise prediction program, such as the NASA Langley PROPFAN (7) program or that of ANOPP (8). This auxiliary program is not part of PAIN as are the programs CYL2D, MRP, and MRPMOD.

Section 4.0 of Ref. (2) should be consulted for an expanded overall program description with accompanying flow chart. Sections 5.0 and 6.0 of Ref. (2) deal with the input data requirements and control cards.

2.3 Report Organization

In this report, comparisons are first made between predictions and measurements from a set of scale model experiments. Next consideration is given to the application of the PAIN program to real aircraft, and to the development of utilization schemes that will allow its efficient use on a full scale

airplane. Comparisons are then made between PAIN predictions and flight test results for a particular propeller-driven airplane.

3.0 SCALE-MODEL TESTS AND COMPARISONS

The tests considered in this section provide results for the most direct type of comparison of PAIN predictions and measurements. All of the basic elements of the analytical model are present in the test hardware and the test rig. Nothing is present that does not have an analytical counterpart. The PAIN model (Figure 1) is a propeller excited segment of a cylindrical fuselage stiffened by rings and stringers, with an integral stiffened floor and sidewall trim (lacking wings and empennage). This is exactly the description of the scale-model hardware and test configuration shown in Figures 4 through 7. When PAIN is applied to real aircraft, the problem of fuselage modeling must be addressed; effects of non-uniformity of cross-section, presence of wings and empennage, etc., may need to be examined. Here, however, a simple question is asked: "How good are the interior predictions given that the computer creates counterparts of all elements of the test?".

In the present tests, the propeller tones are much higher around the propeller plane than near the end caps. The transmission to the interior is overwhelmingly dominated by sound passing through the cylinder wall. Because of this, the tests are free of problems introduced by the end caps. It is evident that the tests simulate, in a realistic physical manner, the transmission of propeller noise into an airplane cabin. The basic physical mechanisms of propeller tone transmission are, in fact, being duplicated in the test. It

¹ Illustrations of tests and hardware based on sketches provided by C.M. Willis, NASA Langley Research Center.

FIGURE 4. MODEL TEST FACILITY [1] (Dimensions in meters)

FIGURE 5. FUSELAGE MODEL [1]

FIGURE 6. FLOOR ASSEMBLY [1] (Dimensions in meters)
-13-

ORIGINAL PAGE IS OF POOR QUALITY

is reasonable, therefore, to expect good predictions with PAIN only if good physical modeling has been achieved, i.e., with respect to the coupling of the propeller pressure field with the sidewall and sidewall with the trim. Also the sidewall and floor response must be properly predicted and their coupling to the interior acoustic space adequately described. The rapid decay of the pressure field away from the propeller plane leads to the above conclusions.

3.1 Test Configuration

The test configuration is shown in Figure 4. The fuselage and propeller are located downstream of a duct that supplies air to simulate airplane forward velocity.

3.1.1 Fuselage²

The fuselage (Fig. 5) is a cylinder 1.83m (72 in.) long and 1.02m (40 in.) in diameter. The skin is 0.00081m (0.032 in.) thick and is stiffened by eighteen (18) stringers spaced on 20° centers. The stringers are 90° angles having dimensions of approximately 0.00953 x 0.00953 x 0.00051m (3/8 x 3/8 x 0.020 in.). They are riveted to the inside of the skin and pass through cut-outs in eight (8) internal ring frames that are spaced along the cylinder every 0.2m (8 in.) The frames are aluminum channels with dimensions of approximately 0.016 x 0.038 x 0.00081m (5/8 x 1-1/2 x 0.032 in.).

The floor of the cylinder (Fig. 6) consists of a 0.00081m

² Most of the descriptive information in this section can also be found in Appendix E of Ref. 1.

(0.032 in.) plate stiffened by supports of the same thickness spaced every 0.2m (8 in.). The supports extend downward from the floor to the bottom of the cylinder. There are also two floor beams (channels of the same dimensions as the cylinder ring frames) that run longitudinally, each located approximately 0.14m (5.5 in.) from the center of the floor. The width of the floor is 0.848m (33.4 in.) leading to a floor angle θ_0 of 56.6 degrees (see Fig. 1). The outer edge of the floor is bolted to the cylinder wall. The cylinder is closed by 0.013m (1/2 in.) thick end caps that are used to support the cylinder in the NASA Langley propeller test rig. The entire fuselage assembly is constructed of 2024-T3 aluminum.

3.1.2 <u>Trim</u>

The end caps are lined (inside) with one layer of 0.0127m (1/2 in.) thick Owens-Corning PF-105 Fiberglas having a density of 9.61 kg/m³ (0.6 lb/ft³) with a 0.00005m (0.002) in.) thick vinyl film facing. The circumference (or sidewall) is lined with four layers of the same material; three layers between frames and the fourth covering the frames. The unfaced surface of the fiberglass insulation is exposed inwardly. The finish trim is a sheet of epoxy/fiberglass material with properties of a National Electrical Manufacturers Association (NEMA) G-10 (equivalent to Mil. Spec. 18177, GEE). The thickness is 0.00079m (0.032 in.) and its surface mass is 1.465 kg/m^2 (0.3 lb/ft²). The trim is hard mounted to the floor and attached to the rings by nine soft mounted screws (Fig. 7). A 120° sector of the trim surface is covered with a sheet of vinyl (similar to automobile upholstery) of the same thickness. The total weight of the trim is 6.58 kg (14.51 lb) with a surface area of 3.624 m² (39 ft²) which averages out to 1.815 kg/m² (0.371 lb/ft²).

The 120° sector of vinyl on the trim simulates a similar treatment in a well-known light aircraft. Its presence introduces a small (and undesirable) discontinuity in the surface weight of the trim but benefits the test by providing some damping of the hard epoxy/fiberglass trim. The PAIN model is designed to include a dissipative trim lining.

3.1.3 Propeller

The propeller is a three-bladed, 0.3 scale Hartzell for a Twin Otter aircraft with a diameter of 0.76m (30 in.). It is driven by a 30 kw (40 horsepower) variable speed electric motor capable of turning it up to 8000 rpm. The propeller blades are Series 16 airfoils. The clearance between the blade tip and cylinder wall is 1/10 of the propeller diameter or 0.076m (3 in.). In all tests the blade pitch is fixed at 20°.

3.2 Description of Tests³

The primary tests of concern here are those where the interior noise was measured as the propeller turned at different speeds. In the present study, three speeds are considered: 3000, 4000, and 5000 rpm. The airflow velocity in all three cases is 23.8 m/s (78 ft/sec), or about 46 knots.

In the propeller tests, with the model fuselage in place, the only acoustic measurements were of the sound levels inside the cylinder. These were taken with an array of eleven (11) micro-

³ Tests reported herein were performed at NASA Langley Research Center.

phones spaced along a cylinder diameter to represent measurements over equal annular areas (Figure 8). The array was positioned at four axial stations, $\ell/L = 0.125$, 0.375, 0.625, and 0.875, representing the center of four subvolumes (segments) of the interior. At each of the four axial stations, there were 49 sampled locations obtained by positioning the array at $\phi = 0^{\circ}$, $\pm 51.5^{\circ}$ and $\pm 103^{\circ}$. (Note, for all tests, the angle θ in Figure 8 was 90° . θ and ϕ in Figure 8 are not to be confused with PAIN θ and ϕ of Figure 2.) A total of 196 measurement locations were sampled from which the space-average interior levels are obtained for each harmonic.

Supplementary tests were performed to assist in diagnostic work related to the determination (and/or evaluation) of PAIN input data and intermediate output. The PAIN program presently uses propeller noise predictions made for a free field condition, then applies a correction to account for the cylinder's presence. This is done because the blocked pressures are not available from present propeller noise prediction programs (it is the author's understanding that NASA Langley has begun work on this problem; PAIN can be easily modified to accept the new type data when available - see Section 3 of Ref. (2)).

Free field measurements of the propeller noise field were made to compare against the PAIN propeller noise input data created with ANOPP. This was done to permit the determination of the extent of "biasing" of interior noise predictions by inaccurate exterior noise predictions from ANOPP. Figure 9 shows the test configuration. Measurements were made (with the cylinder absent) for the three propeller speeds used in the interior noise tests. The microphones were positioned such that predicted and measured data along the grid line

FIGURE 8. PROPELLER TESTS

FIGURE 9. FREE FIELD MEASUREMENTS (Dimensions in meters)

l=1 of Figure 3 could be compared.

A 0.508m (20 in.) diameter hardwood cylinder with flushmounted microphones in its surface was used to measure blocked pressure levels along the grid line $\ell=1$ to determine the increase in sound pressure levels arising from surface reflections (the fact that the hard cylinder is only one-half the diameter of the model fuselage is probably not too serious a problem for measurements taken along $\ell=1$). The test configuration is shown in Figure 10.

Finally, measurements were made of acoustic and structural loss factors. As usual for these types of measurements, data are spotty, generally taken at whatever frequencies they could be reliably interpreted and generally unidentified with respect to particular modes.

3.3 Measurement Results

3.3.1 Loss factors

Acoustic and structural loss factors for the outfitted model fuselage are given in Table 1. All of the numbers are based on reverberation decay times of terminated excitation tones. The decay of the sound level inside the model fuselage's cabin determined the acoustic loss factor, η_n . The structural loss factors of the fuselage skin and of the finish trim are given respectively by η_T^{\prime} and $\eta_{T^{\bullet}}$. The loss factors are computed using the relation

$$\eta = 2.2/fT_{60}$$
 ,

where f is the frequency of the excitation and T_{60} is the time for a 60 dB decay.

FIGURE 10. MICROPHONE LOCATIONS FOR BLOCKED PRESSURE MEASUREMENTS

Table 1. Measured Acoustic and Structural Loss Factors

Cabin (Micro.)			Tr	im (acc	e1.)	Fusel	age (acc	el.)
Freq. (Hz)	T ₆₀	$\eta_{\rm n}$	Freq.	T ₆₀	$\eta_{_{ m T}}$	Freq.	T ₆₀	$\eta_{_{\mathbf{T}}}^{_{\mathbf{I}}}$
93	1.2	0.020	45	0.462	0.105	127	0.30*	0.057
115	0.61	0.031	88	0.442	0.056	500	0.041*	0.107
142	0.46	0.033	110	0.091	0.219	890	0.043	0.057
192	0.27	0.042	170	0.065	0.199	1345	0.031*	0.053
289	0.40	0.019	216	0.065	0.156	1465	0.041	0.037
301	0.21	0.034	290	0.065	0.116	2337	0.047	0.020
377	0.53	0.011	400	0.065	0.085	2710	0.026*	0.031
452	0.19	0.025	500	0.039	0.113	4225	0.017*	0.031
512	0.33	0.013	650	0.035	0.097			
655	0.37	0.009	825	0.042	0.063		ng and s	ctruger
702	0.13	0.024	1000	0.030	0.073	· st	ringer	
755	0.058	0.050	1150	0.021	0.091			
865	0.048	0.053	1400	0.027	0.058			
932	0.094	0.025	1500	0.025	0.059			
942	0.078	0.029	1800	0.014	0.087			
1010	0.15	0.015	2100	0.032	0.015			
1260	0.11	0.016	2300	0.015	0.064			
1355	0.10	0.016	2800	0.015	0.052			
1700	0.10	0.013	3400	0.019	0.034			
1755	0.04	0.031	4100	0.038	0.014			
1770	0.021	0.059	4600	0.023	0.020			
1965	0.029	0.038						
2000	0.032	0.034						
2000	0.008	0.137						
2037	0.018	0.060						
2162	0.017	0.060					_	
5625	0.089	0.004					•	
5725	0.034	0.011			•			

3.3.2 Propeller noise

The measured free field propeller noise levels are shown in Figures 11 through 13. The data are for the grid line \$\mathcal{L}=1\$ as previously noted in Section 3.2. In the figures, the plotted values are one-third octave band levels for those bands in which the propeller blade passage frequencies and their harmonics lie. These are to be considered the true tonal levels where it is evident that the tones clearly dominate (for instance near the propeller plane). Broadband noise appears to be present in measurements at large distances from the plane of rotation. Figure 14 shows a typical measured spectrum. Comparison of measurements in Figure 14 with the data plotted in Figure 13 (Run No. 8113, Microphone 1), shows that the peaks correspond to the third-octave levels at least out to the fourth harmonic.

Phase measurements that were made in the 4000 and 5000 rpm cases are shown in Figures 15 and 16. The arrows indicate the approximate phase differences measured with microphone pairs (1,3) and (2,3) in runs 8112 and 8113.

3.3.3 Interior sound levels

Sound pressure levels at the blade passage frequencies and their harmonics are given in Tables 2, 3, and 4. The interior measurements were analyzed in one-third octave bands and the band levels for those bands containing the tones were taken as the tonal levels. The first three harmonics were sufficiently high on the inside to clearly dominate the broad-band noise background. Narrow band analyses of a few records indicated that the fourth and higher harmonics were so far down in the noise that data for those harmonics were defective. Figure 17 shows a typical interior spectrum illustrating the problem with

8

MEASURED FREE FIELD NOISE -FIGURE 11. PROPELLER AT 3000 RPM

0

-1.0

-0.5

Distance from Propeller Plane, x_3 / D_p

0.5

1.0

-26-

FIGURE 13. MEASURED FREE FIELD NOISE-PROPELLER AT 5000 RPM

ORIGINAL PAGE IS OF POOR QUALITY

Table 2. Interior Measurements - 3000 RPM, Harmonic No. 1 (150 Hz)*

Run 8018 21 24 27 30	x ₃ /R _p +1.17	-103 -51.5 0	M ₁ 82 83 80 78	M ₂ 83 84 80 77	M ₃ 85 85 80 75 76	M ₄ 83 86 79 73	M ₅ 83 86 79 71	M ₆ 83 87 * 71	M ₇ 83 87 79 70 78	M ₈ 83 87 79 70	M ₉ 80 81 82	M ₁₀ 80 82 82	M ₁₁ * *
14 11 8 5 1	-•03	-103 -51.5 0 51.5 103	76 73 75 78 80	76 73 72 78 81	* *. 71 79 81	78 77 69 79 82	79 79 69 80 83	79 79 69 79 83	* * * *	82 81 * 80 85	79 * *	81 81 78	* *
51 48 45 42 33	-1.23	-103 -51.5 0 51.5 103	77	79 74 76 81 81	79 75 76 81 82	80 76 75 81 82	82 77 74 82 82	82 78 74 82 83	82 80 75 82 83	* 81 75 83 84	* *	82 84 81	83 86 82
54 57 60 63 66	-2.43	-103 -51.5 0 51.5 103	81 80	81 82 80 77 78	82 83 80 76 78	82 84 79 75 79	83 85 79 74 79	83 86 79 73 79	84 86 79 72 80	84 86 78 *	* 80 80	81 82 81	82 83 81

^{* 160} Hz Band

^{* =} data judged to be of poor quality and discarded

Table 2. (Continued). Interior Measurements - 3000 RPM, Harmonic No. 2 (300 Hz)*

										•			
Run 8018	x ₃ /R _p +1.17	φ° -103	M ₁ 62	M ₂ 65	M 72	M ₄ 65	^M 5	^M 6 63	^M 7 62	м ₈ 60	м ₉	M ₁₀	M ₁₁
21		-51.5		65	66.		68	69	69	69	67	70	*
24		0	48	54	58	60	57	*	58	57	64	65	*
27		51.5	-	65	67	66	69	67	68	67	60	62	*
30	•	103	66	70	71	72	72	72	73	73		U	
, ·				, -	•	• • —	. —	. —	;	,,			
14	03	- 103	68	67	*	62	64	62	*	70			
11		-51.5	61	61	*	61	61	61	*	61	61	61	*
8		0	68	68	68	69	69	70	*	*	*	72	*
5		51.5	68	66	66	67	66	67	*	67	*	67	*
1		103	69	69	69	68	68	66	*	63			
51	-1.23	-103	52	51	51	51	52	51	51	*			
48		-51.5	51	51	52	52	52	52	52	52	*	62	62
45		0	64	68	69	70	71	71	71	72	*	64	67
42		51.5	62	62	62	62	62	62	62	62	*	58	60
33		103	54	54	56	58	64	61	63	65		-	
					-								
54	-2.43	-103	61	61	61	61	61	61	61	61			
57		-51.5	60	59	64	67	68	69	69	69	*	74	73
60		0	64	72	75	76	78	78	78	79	76	78	79
63		51.5	62	65	68	69	71	70	71	*	74	76	77
66		103	69	68	68	67	66	66	64	62	•	• –	
		-	-			•			- •				

^{* 315} Hz Band

Table 2. (Concluded). Interior Measurements - 3000 RPM, Harmonic No. 3 (450 Hz)*

			-										
Run 8018	x ₃ /R _p +1.17	φ° -103	M ₁	M ₂ 47	M ₃	M ₄ 45	^M 5 47	^M 6 49	M ₇ 50	M ₈ 50	^M 9	M ₁₀	M ₁₁
21	, , • , ,	-51.5	51	50	52	53	52	54	54	54	51	49	*
24		0	50	44	7 <u>–</u> 44	48	52	*	53	54	52	50	*
27		51.5	51	50	50	51	54	53	53	53	51	52	*
30		103	52	48	51	53	55	56	<i>5</i> 7	58		_	
		. • •	/-	70	,				,				
14	03	-103	47	45	*	51	55	55	*	54			
11		-51.5	51	52	*	54	56	54	*	55	54	53	*
8		0	49	45	47	51	52	52	*	*	*	47	*
5		51.5	50	45	46	49	53	52	*	53	*	51	*
1		103	54	53	52	51	53	55	*	61			
51	-1.23	-103	44	50	54	56	55	58	58	*		•	
48		-51.5	46	49	52	54	56	57	57	58	*	55	57
45		0	44	42	45	48	50	52	51	52	*	55	55
42		51.5	44	50	54	56	59	58	57	57	*	50	54
33		103	51	50	51	51	51	51	52	52			
54	-2.43	- 103	48	45	48	51	54	55	56	57			
57		-51.5	51	52	52	52	53	53	56	53	*	52	54
60		0	50	48	46	44	47	49	49	51	51	49	50
63		51.5	48	44	45	48	50	50	51	*	48	49	52
66		103	51	48	45	44	47	45	46	47			

^{* 500} Hz Band

Table 3. Interior Measurements - 4000 RPM, Harmonic No. 1 (200 Hz)*

Run 8019	x ₃ /R _p +1.17	φ° -103	M ₁ 87	M ₂ 92	M ₃	M ₄ 94	M ₅	^M 6 96	M ₇ 96	M ₈ 97	M ₉	^M 10	M ₁₁
22		-51.5		91	92	92	93	93	93	93	80	87	91
25		0	76	81	84	86	87	*	90	91	71	70	*
28		51.5	• •	82	84	85	86	85	85	85	86	90	*
31		103	87	91	93	93	94	94	94	95			
15	03	-103	84	86	*	87	88	87	*	91			
12		- 51 . 5	87	88	*	90	91	90	*	90	87	90	94
. 9		0 -	85	86	*	87	87	88	*	89	*	87	*
6		51.5	86	83	87	77	74	75	*	*	*	87	91
3		103	87	90	92	93	94	94	*	95			
52	-1.23	-103	87	89	89	90	90	89	89	89			
49		-51.5	87	89	90	91	91	92	92	92	*	89	91
46		0	86	87	87	88	89	90	90	91	*	86	85
43	•	51.5	82	76	65	79	83	84	86	87	*	87	87
34		103	87	91	*	94	95	96	96	97			
55	-2.43	-103	80	83	85	85	85	86	85	85			
58		-51.5	79	86	88	90	91	91	92	92	84	87	89
61		0	82	85	87	88	89	89	90	90	77	78	79
64		51.5	85	89	90	92	93	94	94	*	67	74	77
67		103	85	90	92	93	94	94	95	96			

^{*200} Hz Band

Table 3. (Continued). Interior Measurements - 4000 RPM, Harmonic No. 2 (400 Hz)*

											•		
Run 8019	x ₃ /R _p +1.17	φ° -103	M ₁	M ₂	M _* 3	M ₄ 78	м ₅ 79	^M 6 79	M ₇ 81	M ₈ 80	^м 9	^M 10	M ₁₁
22		-51.5	72	75	78	79	79	81	80	81	75	79	76
25		0	70	71	71	70	65	*	71	71	74	76	*
28		51.5	64	73	79	82	84	84	85	86	67	74	*
31		103	72	73	75	78	79	80	81	81			
15	 03 .	-103	73	69	*	69	75	71	*	71			
12		-51.5	72	75	*	79	79	78	*	69	75	70	65
9		0	72	72	*	75	75	77	*	78	*	78	*
6		51.5	74	74	81	77	78	79	*	*	*	78	76
3	•	103	74	70	70	71	73	73	*	79			
52	-1.23	-103	77	77	78	79	78	80	80	80			
49		-51.5	72	67	76	79	81	82	84	84	*	66	68
46		0	76	76	77	77	74	79	77	78	*	81	82
43		51.5	75	72	71	73	75	72	74	76	*	82	82
34		103	68	70	*	82	82	84	85	86			
55	-2.43	-103	78	78	81	82	84	85	85	85			
58		-51.5	74	75	81	84	86	86	86	86	85	84	86
61		0	77	75	75	75	75	76	76	76	85	84	84
64		51.5	77	79	83	85	86	87	87	*	80	80	82
67		103	79	77	80	82	82	84	85	85			

^{* 400} Hz Band

Table 3. (Concluded). Interior Measurements - 4000 RPM, Harmonic No. 3 (600 Hz)*

Run	x ₃ /R _p	φ°	M ₁	M ₂	M ₃	M ₄	M ₅	м ₆	м ₇	м ₈	м ₉	M ₁₀	M ₁₁
8019	+1.17	-103	,	62	*	5 9	62	65	66	67	9	10	11
22		-51.5	63	62	62	63	65	67	68	68	57	62	65
25		0	64	61	56	50	56	*	62	64	59	61	*
28		51.5	62	61	60	60	60	60	58	56	63	64	*
31		103	59	60	60	61	62	65	67	69			
15	03	-103	50	60	*	64	64	64	*	63			
12		-51.5		61	*	59	62	62	*	64	68	69	71
9		0	69	67	*	66	66	66	*	67	*	66	71 *
6		51.5		62	68	69	72	74	*	∀	*		
3		103	68	67	70	64	65		*		•	56	61
)		105	90	67	70	04	כס	66	•	72			
52	-1.23	-103	66	64	63	64	66	68	69	69			
49		-51.5	67	67	66	65	65	63	63	63	*	62	61
46		0	63	60	58	57	58	61	63	67	*	65	64
43		51.5	61	64	67	68	69	70	70	69	*	65	63
34	•	103	61	60	*	57	57	62	65	68			
55	-2.43	-103	65	64	63	62	6 <u>3</u>	64	64	64			
58	-6-47	- 51.5		66	65	64	64		•	•	C1.	Ci	<i>C</i> ,
61		0					•	64 50	65	65	64	64	64
64		51.5	65 60	64 57	61	58 65	57	59	61	62	67	69 65	68
				57 =1	62	65	67 50	68	69	*	64	65	64
67		103	52	54	51	54	58	62	63	65			

^{★630} Hz Band

Table 4. Interior Measurements - 5000 RPM, Harmonic No. 1 (250 Hz)*

								•					
Run 8020	x ₃ /R _p +1.17	φ° -103	M ₁ 86	M ₂ 93	м ₃ 97	^M 4 97		^M 6 98	^M 7 98	M ₈ 98	^M 9	^M 10	M ₁₁
23	•	-51.5		99	102	101	101	.102	103	103	97	101	*
26	•	0	90	94	97	98	98	*	100	100	92	95	*
29		51.5	95	97	99	100	101	101	101	101	83	92	*
32		103	98	101	103	103	104	103	103	103	÷		
16	03	- 103	90	*	*	100	102	101	*	102			
13		-51.5	*	*	*	*	*	*	*	*	*	*	*
10		0	85	91	*	94	95	95	*	95	¥	96	*
7		51.5	94	95	*	95	94	94	*	*	*	95	*
4	•	103	99	102	104	105	105	105	*	105			
												•	
53	-1.23	- 103	80	*	94	96	98	98	100	100			
50		-51.5	92	99	99	100	100	101	101	101	*	102	*
47		0	91	97	99	100	101	101	101	101	*	97	98
44	•	51.5	89	85	85	77	81	83	*	*	*	*	*
35		103	87	90	*	104	104	*	*	*			
56	-2.43	- 103	86	*	94	96	96	97	97	*			
59		-51.5		98		-	-	103		104	99	102	103
62		0	92	97	100	101	*	*	*	*	*	97	97
65		51.5	•	96	98	99	100	101	102	102	*	*	89
68	•	103	99	-	-			106	-	-			- ,
					- •	- 2		•					

^{* 250} Hz Band

Table 4. (Continued). Interior Measurements - 5000 RPM, Harmonic No. 2 (500 Hz)*

Run 8020 23 26 29 32	*3 ^{/R} p +1.17	φ° -103 -51.5 0 51.5 103	93	M ₂ 81 92 84 92 81	M ₃ 77 92 82 92 81	M ₄ 83 89 91 91	M ₅ 87 88 94 92 87	M ₆ 90 87 * 91	M7 91 87 97 92 89	M ₈ 91 88 97 92 89	M ₉ 89 88 89	M ₁₀ 75 81 79	M ₁₁ . * *
16 13 10 7 4	03	-103 -51.5 0 51.5 103	86 * 79 83 80	* 80 85 62	* * * * 85	87 * 91 89 83	88 * 93 90 85	86 * 94 91 86	* * * * *	96 * 94 * 90	* *	* 87 81	*
53 50 47 44 35	-1.23	-103 -51.5 0 51.5 103	91 91	* 88 88 92 75	86 82 88 93 *	88 84 91 93 89	89 87 92 94 91	90 89 94 94	92 90 94 *	90 90 94 *	* *	90 89 *	* 89 *
56 59 62 65 68	-2.43	-103 -51.5 0 51.5 103	96 99 99 99	* 97 91 97 87	74 95 84 95 75	87 93 96 93 87	92 91 * 91 92	94 90 * 90 93	95 90 * 88 94	* 90 * 87 94	95 * *	74 82 *	91 70 91

^{*500} Hz Band

Table 4. (Concluded). Interior Measurements - 5000 RPM, Harmonic No. 3 (750 Hz)*

										*			
Run	x_3/R_p	ϕ°	M	M ₂	^M 3	M4	M ₅	^M 6	M ₇	M ₈	^M 9	M ₁₀	M ₁₁
8020	+1.17	- 103	71	64	71	67	69	70	72	71		_	
23		-51.5	74	75	73	70	70	70	71	73	73	69	*
26		0	77	75	73	73	76	*	78	79	65	71	*
29		51.5	76	74	71	72	74	75	75	74	59	71	*
32		103	74	71	71	75	77	78	78	78			
16	03	-103	63	*	*	64	66	67	*	70			
13		-51.5	*	*	*	*	*	*	*	*	*	*	*
10		0	76	73	*	67	72	75	*	78	*	75	*
7		51.5	79	76	*	74	77	78	*	*	*	64	*
4		103	77	74	74	75	77	79	*	83			
53	-1.23	- 103	73	*	72	74	76	78	77	78			
50	. • = 5	-51.5		72	68	70	75	78	80	80	*	63	*
47		0	77	74	70	67	68	70	70	71	*	77	78
44		51 . 5	* *	69	65	66	71	75	*	*	*	*	*
35		103	61	65	*	67	68	*	*	*			
		,0)	٠.			01	00						
56	-2.43	- 103	71	*	65	64	66	67	68	*			
59		-51.5	75	73	69	64	68	71	72	72	75	72	74
62		0	74	71	68	72	*	*	*	*	*	69	72
65		51.5	69	67	68	70	71	72	73	73	*	*	71
68		103	69	64	65	68	70	71	72	73			
		-	-		-								

^{*800} Hz Band

the higher harmonics.

Space-average sound pressure level (Harmonic H)

PAIN predicts the interior space-average sound pressure level for each harmonic. The equivalent measured interior space average needed for comparison, and the standard deviation of the mean square pressure are given below.

$$\overline{SPL}_{H}=10 \log(\langle p_i^2 \rangle_{s,t}^H/p_0^2)$$
,

where the space-average mean square pressure for harmonic H is

$$< p_{i}^{2} >_{s,t}^{H} = (1/V) \sum_{j}^{N} < p_{i}^{2} >_{j}^{H} V_{j}$$

V is the volume of the cylinder above the floor (or if data for some sampled subvolumes V_j are considered bad and not used, the total volume of all subvolumes V_j used, i.e., $V = \sum V_j$). N is the number of subvolumes with good microphone data.

In the present case

 V_j = 0.014LR² for microphones 1 through 8, ϕ = ±103°, ±51.5°, 0° = 0.014LR² for microphones 9 through 11, ϕ = 0° = 0.007LR² for microphones 9 and 10, ϕ = ±51.5° = 0.0225LR² for microphone 11 when ϕ = ±51.5°

In the relations above,

$$< p_{i}^{2} >_{j}^{H} = p_{o}^{2} \cdot 10^{SPL}_{j}^{H} / 10$$

SPL $_{j}^{H}$ = Sound pressure level measured in subvolume j, harmonic H

p₀= reference pressure = $2x10^{-5}$ nt/m²(20 μ Pa).

The standard deviation of the mean square pressure is defined by

$$s_{H} = \left\{ (1/N-1) \sum_{j=1}^{N} (\langle p_{i}^{2} \rangle_{j}^{H} - \langle p_{i}^{2} \rangle_{s,t}^{H})^{2} \right\}^{\frac{1}{2}} .$$

Since the sampled subvolumes V_j are not identical the mean and standard deviation are calculated in the following manners. Let

$$x_{H}^{j} = (10^{SPL_{j}^{H}/10} \cdot v_{j} \cdot 10^{-6})/LR^{2}$$

Define \overline{x}_H as the average over N subvolumes of x_H^j

$$\bar{x}_{H} = (LR^2/V) \sum_{j=1}^{N} x_{H}^{j} = LR^2 \sum_{j=1}^{N} x_{H}^{j} / \sum_{j=1}^{N} V_{j}$$

Also let the primed quantity be defined

$$\overline{x}_{H}^{*} = \overline{V}\overline{x}_{H}/LR^{2}$$
,

where \overline{V} is the average subvolume's volume

$$\overline{V} = (1/N) \sum_{j=1}^{N} V_{j} .$$

Then the measured mean sound pressure level (average in space) for harmonic H is given by the exact result

The standard deviation is defined and computed with

$$s_{H}^{i} = \left\{ (1/N-1) \sum_{j=1}^{N} (x_{H}^{j} - \overline{x}_{H}^{i})^{2} \right\}^{\frac{1}{2}}$$
.

The above is a sufficiently close approximation to the true sample standard deviation.

Finally, set

$$s_{H}=s_{H}^{1}LR^{2}/\overline{V}$$
 .

The (1- α)% confidence intervals of the space average sound pressure level at harmonic H are computed by using \overline{x}_H and s_H :

$$SPL_{H}^{1-\alpha}=60+10log(\overline{x}_{H}+s_{H}t_{m;\alpha/2}/\sqrt{N}),$$

where $t_{m;\alpha/2}$ is the $\alpha/2$ percentage point of the Student t - distribution with m = N-1 degrees of freedom. In the present case, a value of α equal to 0.01 is selected and the 99% confidence limits computed.

Figures 18, 19, and 20 show the axial variations of the average sound pressure levels in the four major (axial) subvolumes sampled. Note that very little axial variation is present, however, the third harmonics of the 4000 and 5000 rpm cases do have a slightly apparent peak near the propeller plane.

Table 5 summarizes the reduced interior noise levels. Figure 21 gives the same results in graphical form. It is the basic plot upon which the PAIN predictions can be directly overlaid.

3.4 Computer Simulation of Scale-Model Tests

This section begins with a brief discussion of some of the details of the modeling of the fuselage and trim. Next the propeller modeling requirements are considered. Then the ANOPP propeller noise predictions used as input data to the PAIN program are scrutinized.

ORIGINAL PAGE IS OF POOR QUALITY

— — 99% Confidence Limits

FIGURE 18. AXIAL VARIATION OF AVERAGE SOUND PRESSURE LEVEL BY MAJOR SUBVOLUME (3000 RPM)

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 19. AXIAL VARIATION OF AVERAGE SOUND PRESSURE LEVEL BY MAJOR SUBVOLUME (4000 RPM)

_____ 99% Confidence Limits

FIGURE 20. AXIAL VARIATION OF AVERAGE SOUND PRESSURE LEVEL BY MAJOR SUBVOLUME (5000rpm)

Table 5. Measured Space Average Sound Pressure Levels, Entire Cabin Space (Above Floor)

RPM.	Harmonic, H	Freq. (Hz)	SPL _H	SPL 99 *
3000	1	150	81.0	80.2-81.7
	2	300	69.1	67.1-70.4
	3	450	52.9	51.8-53.8
4000	1	200	90.3	89.3-91.0
	2	400	80.3	79.1-81.1
	3	600	65.2	64.2-65.9
5000	1	250	100.2	99.3-100.9
	2	500	91.5	90.3-92.4
	3	750	74.0	72.9-74.9

^{*} calculated mean

^{* 99%} confidence that true mean lies in this band

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 21. MEASURED SOUND LEVELS INSIDE MODEL FUSELAGE INDUCED BY PROPELLER

3.4.1 Fuselage modeling

The scale model fuselage is basically the same as the analytical model, having ring frames and stringers on the shell and longitudinal and transverse floor beams as stiffeners. part of the input data file for the program MRP, there are four quantities to be specified that are used in the calculation of the modes of the stiffened shell and which define the characteristics of the stiffeners: Dys, the bending rigidity of the shell stringers divided by the stringer spacing; $\mathbf{D}_{\mathbf{R}\boldsymbol{\theta}}$, the bending rigidity of the shell frames divided by the frame spacing; D_{xp} , the bending rigidity of the longitudinal floor beams divided by the floor beam spacing; D_{yp} , the bending rigidity of the transverse floor supports divided by the The procedure to be followed to calculate support spacing. these quantities is: 1) compute the moment of inertia of a single stiffener about the inner surface of the shell (or lower surface of the floor), 2) multiply by the elastic modulus, and 3) divide by the stiffener spacing. The calculation of the moment of inertia of a transverse floor beam (support) requires special attention.

Figures 5 and 6 show that the transverse floor beams (supports) extend from the bottom of the floor down to the shell frames where they are attached. It is assumed that about 0.038m (1.5 in.) of the total depth of the support actually provides bending rigidity to the floor. This is arbitrarily chosen since the longitudinal floor beams are themselves 0.038m (1.5 in.) deep and because part of the floor support provides stiffening to the shell since it is attached to the frame. This is admittedly an unknown complicating factor in the test which is assumed not to be serious, as the upper part of the shell is felt not likely to be overly restrained by the actual supports

as compared to their assumed (computer) configuration.

The input data for the model fuselage (required by programs MRP and MRPMOD) are given in Table 6. In addition to the data shown, the floor must be specified (alphamerically) as being rigidly connected to the shell.

Also given in Table 6 are the input data for programs CYL2D and PAIN. In the latter case, the table is used to specify sources or models used. For instance, no measurements were made of the structural loss factors of the bare fuselage (i.e., without trim), so a simple model was assumed ($\eta_r=2/f_r$). The measured values of η_r with trim installed, i.e., η_r^+ are given in Table 1 and since PAIN computes the loss factors with the trim installed, a comparison of predictions with measurements is possible and will be presented later. The acoustic loss factors are taken as zero to force PAIN to compute them.

The trim panel mass per unit of area has two values shown. The first corresponds to the total mass of the trim divided by the surface area (including as part of the mass, the 120° sector of vinyl) and the second the mass per unit of area locally where the propeller blade tip passes nearest the structure and where the most intense exterior sound is realized. The latter value is selected as the more correct one to use although either value leads to approximately the same final result. The trim loss factor is set to 0.13 which is the average value of the measured $\eta_{\rm T}$ (trim installed) over the frequency range of interest. The properties of the fiberglass insulation are those in Figure A-2 of Appendix A in Ref. (1). Finally, the cavity length is slightly larger than the shell's because of the construction.

Table 6. Input Data Used To Simulate Scale Model Tests

	Description	Input Value
D _{xs} ,	bending rigidity of shell stringers di- vided by stringer spacing	62.35 nt-m
$^{\mathrm{D}}\mathbf{R}\boldsymbol{ heta}$,	bending rigidity of shell frames divided by frame spacing	1.20x10 ⁴ nt-m
D _{xp} ,	bending rigidity of longitudinal floor beams divided by beam spacing	8.63x10 ³ nt-m
Dab,	bending rigidity of transverse floor supports divided by support spacing	5.42x10 ³ nt-m
t ^s ,	equivalent skin thick- ness of shell (includ- ing smeared-out stiff- ener areas)	0.001153 m
t ^p ,	equivalent thickness of floor (including smeared-out stiffener areas)	0.00127 m
m _s ,	shell mass per unit area including smeared-out stiffener masses	3.113 kg/m ²
m _p ,	floor mass per unit area including smeared-out stiffener masses	3.446 kg/m ²
a,	radius of shell	0.508 m
L,	length of shell	1.803 m
θ ₀ ,	floor angle	56.6°
	DRO, Dxp, Dyp, ts, ms, mp,	Dxs, bending rigidity of shell stringers divided by stringer spacing DR0, bending rigidity of shell frames divided by frame spacing Dxp, bending rigidity of longitudinal floor beams divided by beam spacing Dyp, bending rigidity of transverse floor supports divided by support spacing ts, equivalent skin thickness of shell (including smeared-out stiffener areas) tp, equivalent thickness of floor (including smeared-out stiffener areas) ms, shell mass per unit area including smeared-out stiffener area including smeared-out stiffener masses mp, floor mass per unit area including smeared-out stiffener masses a, radius of shell L, length of shell

Table 6. (Continued). Input Data Used To Simulate Scale Model Tests

Program		Description	Input Value
PAIN	η _r ,	structural loss factors of bare fuselage (assum- ing a mode exists at the	2/f _r
	η _n ,	resonance frequency, f _r) acoustic loss factors of bare fuselage	0.0
	m _{T.} ,	trim panel mass per unit area	1.82 kg/m ² (1.46)
	$\eta_{_{ extbf{T}}}^{}$,	trim loss factor	0.13
·	L _c ,	cavity length	1.829 m
•	r _p ,	propeller radial location	0.962 m
	zp,	propeller axial location	
	ϕ ,	propeller circumferential location	90°
	В,	number of blades	3
		tion of rotation ter-clockwise, looking aft)	+1

3.4.2 Propeller modeling

The propeller is located radially and relative to the front of the structure by \mathbf{r}_p and \mathbf{z}_p (see Figures 1 and 2). The circumferential position is given by ϕ (Figure 2). Table 6 shows the values corresponding to those of the test. The direction of propeller rotation is defined as counter-clockwise because the top half of the cylinder is swept by the blade tip before the bottom half (or floor).

The grid (Figure 3) is positioned by placing the propeller at k=8. In the present test rig, each grid point (k, 2) lying in the fuselage surface has coordinates defined by the equivalence relation

$$(k,l) \sim (x_1^l, x_2^l, x_3^k)$$
,

where (in meters):

$$x_1^2=0.457+0.508\{1-\cos[(\ell-1)\cdot\pi/18]\}$$

 $x_2^2=-0.508\sin[(\ell-1)\cdot\pi/18]$,

and

$$x_3^k = 0.622 - 0.089(k-1)$$

This grid covers all of the upper quarter surface of the cylinder forward of the propeller and a somewhat greater surface area behind it.

Because of the lengthy calculations involved in the propeller noise prediction programs, the data for the lower quarter of the cylinder seen by the propeller are obtained from the data for the top quarter with the relation (imagining an identical grid below the centerline)

ORIGINAL PAGE 15

$$p(x_1^{\ell}, x_2^{\ell}, x_3^{k}, t) = p(x_1^{\ell}, -x_2^{\ell}, x_3^{k}, t - \tau_{k\ell})$$
,

where $au_{k I}$ is a time delay given in milliseconds by the result

$$\tau_{kl} = 333.33 \alpha_{kl}/N$$
.

N is the propeller rpm and $\alpha_{\mathbf{k}\ell}$ is in degrees and is given by the result

$$\alpha_{k} = \tan^{-1} \left[\left| x_2^{\ell} \right| / x_1^{\ell} \right]$$
.

The propeller harmonic amplitudes at corresponding points above and below the centerline are given by

$$A_{H}^{k\ell}$$
 above $A_{H}^{k\ell}$ below

and the corresponding phases (in degrees) are related by

$$\phi_{\rm H}^{\rm k}$$
 below= $\phi_{\rm H}^{\rm k}$ above+ $\tau_{\rm k}$ Hx360/T₁,

where $T_1 = BPF^{-1}$ is in milliseconds and H is the harmonic index. This can also be written as

$$\phi_{\rm H}^{\rm kl}|_{\rm below} = \phi_{\rm H}^{\rm kl}|_{\rm above} + 2BH\alpha_{\rm kl}$$
,

where B is the number of propeller blades.

Conversion to the coordinate system used in Figures 1 and 2 is with the relations

$$z_k = z_p - x_3^k$$
,

ORIGINAL PAGE IS OF POOR QUALITY.

and (using $\phi = \pi/2$ in Fig. 2)

$$\theta_{\ell} = \pi/2 + \tan^{-1}\left\{\frac{-x_{\ell}^{\ell}}{r_{p}-x_{1}^{\ell}}\right\} = \phi + (\ell-1) \cdot \pi/18$$

The coordinates of the grid point (k, ℓ) are given by the equivalence statement

$$(k,l) \sim (a,\theta_l,z_k)$$
.

The selected grid has spacing Δ of 0.089m (3.5 in.). This spacing is sufficiently close to assure a relatively smooth change in phase for each propeller harmonic from grid point-to-point.

The free field propeller noise predictions needed at the grid points were made with NASA ANOPP (8). The predictions for the 3000, 4000, and 5000 rpm cases were computed at NASA Langley and provided to the contractor. As required for PAIN input, the predictions are the Fourier representations of the actual pressure time histories (the first 10 harmonics are used). Section 3.4 of Ref. (1) should be consulted for an expanded discussion of the input model. As stated previously, after being read-in, the free field pressure amplitudes of the various harmonics are increased in proportion to the incidence angle γ (Figure 2) to simulate the blocked pressures. The phases computed with the propeller program are not modified.

Creation of the input data with the propeller noise program is a separate problem not of concern in this report. However the quality of the predictions made with that program is of concern due to the potential for introducing bias errors in PAIN predictions. Appendix E of Ref. (1) presents a basic overview of the requirements for input data to the ANOPP program and it should be consulted for any further basic informa-

tion. Appendix B of Ref. (1) deals with propeller noise theory and should be referred to if a more in-depth treatment of propeller noise predictions is desired.

In the present tests, the data used to define the particular geometrical characteristics of the propeller are proprietary and thus are not included. It is simply noted here that the angle of attack, chord, and blade thickness are specified as a function of the distance out along the pitch change axis via a data list which is then interpolated as required to fix these variables at all locations on the blade.

Figure 22 shows (for an example) a typical predicted pressure time history and the corresponding PAIN model used. The particular case shown, from the 5000 rpm run, is the pressure at grid location $(k, \ell) = (7, 1)$. It represents only one of 160 such time histories in the PAIN input data file.

3.4.3 Propeller noise predictions and comparisons

There are two fundamental questions concerning the exterior pressure field that have to be answered before comparison of interior predictions should be attempted. First, are the free field propeller noise predictions made with ANOPP reasonable, when compared to the measurement results of Section 3.3.2? Also, are the predicted blocked pressures correct? Equation (43) of Ref. (1) is the PAIN model used to adjust free field pressures to blocked pressures. Is it a good representation?

To answer the first question, consider the propeller noise predictions in Tables 7, 8, and 9. Results for the grid line $\ell=1$ are given (first 5 harmonics only, although 10 harmonics are available). The sound levels in these tables are

TYPICAL PRESSURE SIGNATURE AND THE PAIN PROGRAM FOURIER REPRESENTATION FIGURE 22.

ORIGINAL PAGE IS OF POOR QUALITY

Table 7. ANOPP Predictions of Propeller Noise, Grid Line $\ell=1$ 0.762 m Dia., 3 Bladed Hartzell Propeller @ 3000 rpm

Harmonio		Sound P	ressure	Level,	dB re 2	20 µPa		
H	k=1	2	3	4	5	6	7	8
1	90.1	95•5	100.5	106.3	112.1	117.4	120.2	114.9
2	57.0	66.2	74.9	85.1	95.6	105.5	112.5	108.3
3	24.2	37.0	49.2	63.9	78.9	93.5	104.8	101.9
4	-8.1	7.8	23.6	42.6	62.3	81.5	97.0	95•8.
5	5.3	10.8	16.7	27.5	46.7	69.7	89.4	90.0
		P	hase, $oldsymbol{\phi}_{ ext{F}}$	(degr	ees)			
1	-148.1	-151.2	-153.6	-155.8	-157.4	-158.0	-153.9	-86.1
2	-144.2	-1483	-151.4	-154-4	-156.8	-158.3	-155.7	-92.1
3	-146.1	-147.1	-149.4	-152.6	-155.8	-158.1	-156.7	-97-7
4	-142.3	-142.5	-145.6	-150.0	-154.2	-157.6	-157-4	-103.3
5	-148.5	-151.4	-152.9	-152.3	-153.5	-157.2	-158.0	-108.7
Harmoni	·	Sound P	ressure	Level,	dB re	20 µ Pa		
H	k=9	10	11	12	13	14	15	16
1	119.3	116.0	110.6	104.8	99.1	94.2	89.0	84.3
2	110.4	102.9	92.8	82.3	72.1	63.5	54-4	46.3
3	101.5	89.7	74•9	59•9	45.3	33.0	20.3	9.0
4	92.6	76.5	57.1	37.4	18.5	2.8	-12.8	-24.8
5	83.7	63.5	40.9	23.8	14.8	9•5	4.2	5
		P	hase, $oldsymbol{\phi}_{ extsf{I}}$	degr (degr	ees)			
1	-27.6	-24.1	-24.8	-26.5	-28.7	-30.8	-33.1	-35.3
2	-28.5	-25.8	-27.4	-30.2	-33.5	-36.8	-40.7	-44-5
3	-29.6	-27.6	-30.0	-33•4	- 36.8	-39.0	-39.0	-33.5
4	-31.1	-29.8	-33•3	-37.9	-42.5	-45.3	-42.9	-31.3
5	-33.0	-31.8	-34.1	-31.4	-29.3	-30.5	-32.7	-34-9

ORIGINAL PAGE IS OF POOR QUALITY

Table 8. ANOPP Predictions of Propeller Noise, Grid Line $\ell=1$ 0.762 m Dia., 3 Bladed Hartzell Propeller @ 4000 rpm

Harmonio		Sound Pr	ressure	Level,	dB re 2	20 μPa			
H	k=1	2	· 3	4	5	6	7.	8	
1	97.6	102.5	107.2	112.6	118.1	123.1	125.7	120.6	
2	68.5	76.4	84.0	93.2	102.8	112.0	118.6	114.4	
3	39.3	50.2	60.8	73.7	87.4	100.9	111.3	108.4	
4	10.6	24.1	37 . 5	54.2	72.0	89.7	104.1	102.7	
5	12.9	18.5	25.1	37.9	57.2	78.7	96.9	97.2	
Phase, ϕ_{H} (degrees)									
1	-139.5	-144-9	-148.8	-152.5	-155.2	-156.4	-152.7	-86.0	
2	-128.9	-138.1	-144-4	-149.8	-153-9	-156.5	-154-5	-92.8	
3	-121.6	-133-1	-140.6	-147-1	-152.2	-155-9	-155.6	- 98.8	
4	-111.5	-126.3	-135.6	-143-5	-149.9	-155.0	-156.1	-104-5	
5	-139.2	-143-4	-144.6	-144-4	-148.3	-154.0	-156.5	-110.0	
								 	
Harmonio		Sound Pr	ressure	Level,	dB re	20 µ Pa			
	k=9	Sound Pi	ressure 11	Level,	dB re 2	20 µPa	15	16	
Harmonic	<i></i>			12	13	14	15 97•8		
Harmoni (k=9	10 121.8	11 116.8	12 111.5	13 106•4	14	97.8	93.9	
Harmonic H	k=9 124•9	10 121.8	11 116.8	12 111.5 90.7	13 106•4 81•8	14 102•1 74•6	97.8 67.5	93 . 9 61 . 2	
Harmonic H 1 2	k=9 124.9 116.5	10 121.8 109.5 97.1	11 116.8 100.2 83.5	111.5 90.7 69.9	13 106.4 81.8 57.2	14 102•1 74•6 47•2	97.8 67.5 37.5	93 • 9 61 • 2	
Harmonic H 1 2 3	k=9 124.9 116.5 108.1	10 121.8 109.5 97.1 84.8	11 116.8 100.2 83.5	12 111.5 90.7 69.9 49.2	13 106.4 81.8 57.2	14 102.1 74.6 47.2 19.9	97.8 67.5 37.5	93•9 61•2 29•2	
Harmonio H 1 2 3	k=9 124.9 116.5 108.1 99.7	10 121.8 109.5 97.1 84.8 72.6	11 116.8 100.2 83.5 66.9	111.5 90.7 69.9 49.2 33.4	13 106.4 81.8 57.2 32.7 23.0	14 102.1 74.6 47.2 19.9	97.8 67.5 37.5 7.7	93.9 61.2 29.2 -2.3	
Harmonio H 1 2 3	k=9 124.9 116.5 108.1 99.7	10 121.8 109.5 97.1 84.8 72.6	11 116.8 100.2 83.5 66.9 51.3	111.5 90.7 69.9 49.2 33.4	13 106.4 81.8 57.2 32.7 23.0	14 102.1 74.6 47.2 19.9 17.7	97.8 67.5 37.5 7.7 13.0	93.9 61.2 29.2 -2.3 9.1	
Harmonio H 1 2 3 4 5	k=9 124.9 116.5 108.1 99.7 91.3	10 121.8 109.5 97.1 84.8 72.6 P1	11 116.8 100.2 83.5 66.9 51.3 hase, $\phi_{\rm F}$	12 111.5 90.7 69.9 49.2 33.4 (degr	13 106.4 81.8 57.2 32.7 23.0 ees)	14 102.1 74.6 47.2 19.9 17.7	97.8 67.5 37.5 7.7 13.0	93.9 61.2 29.2 -2.3 9.1	
Harmonic H 1 2 3 4 5	k=9 124.9 116.5 108.1 99.7 91.3	10 121.8 109.5 97.1 84.8 72.6 P1 -26.1 -29.1	11 116.8 100.2 83.5 66.9 51.3 hase, $\phi_{\rm F}$ -27.2 -31.7	12 111.5 90.7 69.9 49.2 33.4 (degr -29.1 -35.5	13 106.4 81.8 57.2 32.7 23.0 ees) -31.0 -39.1	14 102.1 74.6 47.2 19.9 17.7	97.8 67.5 37.5 7.7 13.0	93.9 61.2 29.2 -2.3 9.1 -31.6 -37.1	
Harmonic H 1 2 3 4 5	k=9 124.9 116.5 108.1 99.7 91.3 -29.3 -31.0	10 121.8 109.5 97.1 84.8 72.6 P1 -26.1 -29.1 -31.9	11 116.8 100.2 83.5 66.9 51.3 hase, $\phi_{\rm F}$ -27.2 -31.7 -35.9	12 111.5 90.7 69.9 49.2 33.4 (degr -29.1 -35.5 -41.0	13 106.4 81.8 57.2 32.7 23.0 ees) -31.0 -39.1 -46.1	14 102.1 74.6 47.2 19.9 17.7 -32.2 -41.2 -48.7	97.8 67.5 37.5 7.7 13.0 -32.6 -41.0 -46.6	93.9 61.2 29.2 -2.3 9.1 -31.6 -37.1 -37.3	

Table 9. ANOPP Predictions of Propeller Noise, Grid Line $\ell=1$ 0.762 m Dia., 3 Bladed Hartzell Propeller @ 5000 rpm

Harmonic	; S	Sound Pressure Level, dB re 20 μ Pa							
. Н	k=1	2	3	4	5	6	7	8	
1	104.5	108.9	113.1	118.1	123.2	127.8	130.2	125.5	
2	80.1	86.9	93.5	101.4	109.9	118.1	123.9	120.0	
3	56.1	65.2	73.9	84.7	96.4	108.2	117.4	114.6	
4	32.6	43.8	54.6	68.1	82.9	98.3	110.9	109.4	
5	18.4	27.2	37.9	52.4	69.7	88.4	104.5	104.5	
Phase, ϕ_{H} (degrees)									
1	-126.7	-135.2	-141.5	-147.1	-151.4	-153-7	-150.4	-85.1	
2	-98.2	-116.6	-129.5	-140.4	-148.1	-152.8	-152.0	-93•4	
3	-68.6	-98.1	-118.2	-134-4	-145.2	-151.9	-153.1	-100.1	
4	-37.6	-78.7	-106.6	-128.4	-142.1	-150.6	-153.7	-106.2	
5	-110.1	-101.7	-109.5	-125.6	-139.4	-149.2	-153-9	-111.8	
Harmonio		Sound Pr	ressure	Level,	dB re	20 µPa			
H.	k=9	10	11	12	13	14	15	16	
1	129.7	127.0	122.5	117.9	113.5	109.9	106.2	102.8	
2	121.9	115.8	107.8	100.0	92.9	87.1	81.3	75•9	
3	114.2	104.6	93.1	82.1	72.4	64.8	56.9	49.6	
4	106.6	93•5	78.3	64.3	52.2	42.6	32.6	23.3	
5	98.9	82.4	64.0	48.0	36.4	29.1	23.0	18.3	
Phase, $\phi_{ m H}$ (degrees)									
1	-31.0	-27.8	-28.5	-29.2	-28.7	-26.7	-22.5	-16.1	
2	-34.4	-32.9	-35.3	-36.7	-34.4	-28.1	-16.0	0.8	
3	-37.1	-37.3	-41.8	-44.2	-39.8	-28.5	-7.8	19.5	
4			10 7	50 C	1.0 7	20 9	0.3	78 O	
-	-40.2	-41.9	-48.7	-52.6	-46.2	-27.0	-0.5	0.00	

plotted in Figures 23, 24, and 25 against the measurements of Figures 11, 12, and 13.

In general it can be stated that the comparison is good for the first three harmonics, certainly near the propeller plane where the tones rise well above the broad-band noise. Although the measurement and grid (prediction) positions do not correspond precisely, it is observed that, at least in the 4000 and 5000 rpm cases, within 0.25m (10 in.) either side of the propeller plane, the predictions are quite good. There is some indication that the propeller noise predictions might exceed the actual levels either side of the propeller plane. This cannot be confirmed because measurements were not made at those locations.

The phase predictions (given in the tables) are plotted in Figures 26, 27, and 28. Measurements are available for comparison in the 4000 and 5000 rpm cases. The phase itself cannot be compared, but the phase difference $\Delta\phi_{\rm H}^{\rm mm'}$ between grid points m and m'. This is the quantity required when calculating the modal forces (see Eq. (41) of Ref. (1)). In Figures 27 and 28, the predicted phase differences are indicated between those positions (along grid line $\ell=1$) where the microphones were located in Runs 8112 (4000 rpm case) and 8113 (5000 rpm case) which produced the phase measurements of Figures 15 and 16. As can be seen the calculated phase differences and the measured phase differences compare quite well for the first three harmonics (within 10 to 15 degrees usually).

In summary, it can be stated that ANOPP certainly does a good job of predicting the exterior field. While there are indications that the levels may be over-predicted slightly in the regions just fore and aft of the propeller plane, there is no

FIGURE 23. COMPARISON OF PROPELLER NOISE PREDICTIONS AND MEASUREMENTS, 3000 RPM

FIGURE 24. COMPARISON OF PROPELLER NOISE PREDICTIONS AND MEASUREMENTS, 4000 RPM

COMPARISON OF PROPELLER NOISE PREDICTIONS FIGURE 25. AND MEASUREMENTS, 5000 RPM -64-

ORIGINAL PAGE IS OF POOR QUALITY

PROPELLER TONES PHASE PREDICTION, 4000 RPM. FIGURE 27.

PROPELLER TONES PHASE PREDICTION, 5000 RPM FIGURE 28.

way of proving it from the available data. It is reasonable, at least until future measurements can disprove the assumption, to take the free field predictions as being correct.

Blocked Pressures

To answer the question about the PAIN model used to adjust free field levels to blocked levels, it is necessary to briefly review the basic type of prediction given by Eq. (43) of Ref. (1). If γ (Fig. 3) is zero, the blocked pressure is 6 dB greater than the free field. The ratio remains close to 6 dB for γ less than or equal to about 30° , drops only slightly to 5.75 dB at 50° , 5.4 dB at 60° , 4.75 dB at 70° , 3.3 dB at 80° and finally to zero at 90° . For all practical purposes, the predictions are then for a 5 to 6 dB increase for measurements within a propeller radius either side of the propeller plane along the grid line $\ell=1$.

How much do the pressures actually increase? Figure 29 gives measurement results from the free field and blocked pressure tests (Figures 9 and 10) that show that the pressures increase (near the propeller plane) anywhere from 3 to 4 dB. As one moves away from the plane of rotation the reflection effects appear to dissipate faster than the PAIN model predicts. This implies that perhaps the PAIN model (which is based on some measurements by Magliozzi (9)) should be modified. However the data base is not a large one, and the measurements are not for the same diameter cylinder used in the interior noise study.

Next, the measurements on the hardwood cylinder can be compared to the present PAIN predictions made using the ANOPP free field calculations (Figure 30). The predictions are basically the data in Table 8 increased by 6 dB. These clear-

FIGURE 29. MEASURED FREE FIELD AND BLOCKED SOUND LEVELS INDUCED BY PROPELLER

FIGURE 30. MEASURED AND PREDICTED BLOCKED SOUND LEVELS INDUCED BY PROPELLER ON TEST CYLINDER

ly show an overprediction.

For consistency with the measurements of Figure 29, the PAIN predictions can be modified to limit the increase to 4 dB (instead of 6 dB). For convenience these predictions are also shown in Figure 30.

3.5 Test Comparisons

The propeller noise blocked pressure model is temporarily assumed to be suitable as originally programmed in PAIN. To begin, the acoustic and structural loss factors (which are an intermediate output from PAIN) can be compared with measurement data (Table 1). It is necessary first to concentrate on the structural damping model and to correct certain deficiencies known to be present in it.

3.5.1 Structural damping

As previously noted, the structural loss factors of the fuse-lage modes are calculated for the particular trim installation. For structural mode \mathbf{r} , the loss factor is $\eta_{\mathbf{r}}^{\mathbf{r}}$ and is calculated with Eq. (82) of Ref. (1). That equation has been found to be slightly defective.

Modification of η_r^i 4

In Appendix A of this report, it is shown that η_r^i of Eq. (82) should be given by

 $\eta_{\mathbf{r}}^{\prime} = \left\{ \frac{\left| \mathbf{c}_{\mathbf{w}} \right|^{2}}{\widetilde{\mathbf{m}}_{\mathbf{r}}^{2} \omega_{\mathbf{r}}^{4}} - \frac{2 \mathbf{c}_{\mathbf{w}}^{\mathbf{I}} \eta_{\mathbf{r}}}{\widetilde{\mathbf{m}}_{\mathbf{r}} \omega_{\mathbf{r}}^{2}} + \eta_{\mathbf{r}}^{2} \right\}^{\frac{1}{2}} ,$

⁴ Nomenclature used below is consistent with that of Ref. (1).

where $\overline{\mathbf{m}}_{\mathbf{r}}$ replaces \mathbf{m} of the original result, and

$$\bar{m}_r = mM_r/M_r^X$$
 .

 $\mathbf{M_r}$ is the total modal mass and $\mathbf{M_r^X}$ is given by

$$\mathbf{M}_{\mathbf{r}}^{\mathbf{X}} = \int_{\mathbf{X}} \mathbf{m} \psi(\overline{\mathbf{x}}) \, d\overline{\mathbf{x}} \qquad ,$$

X being the sidewall area covered with trim. The above change is necessary because the original analyses in Refs. (1) and (6) inadvertently led to calculations of structural loss factors premised on total coverage of the model fuselage by trim, and also failed to take into account the fact that significant modal energy of lower order structural modes could be in axial and circumferential stretching motion of the skin (non-bending). The PAIN programming change required is given in Appendix A.

Interpretation of PAIN output

Predicted structural loss factors (output by PAIN) are to be taken from the "Structural Modes" list only. Loss factors, ETA R', listed following "Band-Average Loss Factors" and next to "Trim Factor, dB" are averages over the bands indicated and are wholly fictitious where no modes exist. For the scale-model, the predicted first structural mode is 188.5 Hz and no band average should be shown below 200 Hz.

Comparisons

Predicted loss factors and measurements are compared in Figure 31. The calculated (band average) values shown are heavily weighted at the low end of the modal spectrum by the

FIGURE 31. PREDICTED AND MEASURED STRUCTURAL LOSS FACTORS OF FUSELAGE WITH TRIM INSTALLED, $n_{\rm T}$ = 0.13

loss factors of the floor modes (PAIN predictions are that the scale model fuselage has mostly floor modes at the low end of the modal spectrum). The predicted lowest bona fide shell (cylinder wall) mode is 301.9 Hz. Calculated values of the structural loss factor for the lowest few shell modes are given by the solid circles. Basically the sidewall modes have (predicted) damping values that begin with the solid circles in the range 0.2-0.3 and follow the solid circles and the averages on out to 5000 Hz. These predictions are satisfactory when compared to measurements in the frequency range of interest.

Finally, it is noted here that the modification of η_r' , as detailed previously, alleviates the need to arbitrarily limit its value at low frequencies as assumed in Appendix E of Ref. (1). Also Fig. 31 of this report is the corrected version of Fig. E-15 of Ref. (1).

3.5.2 Acoustic loss factors

The measured and predicted acoustic loss factors are shown in Figure 32. The calculated band average values are plotted upon the scattered individual measurements from Table 1. Predictions are considered satisfactory. Certainly the acoustic loss factor prediction model needs to be applied to a number of different types of trim installations before the quality of the model can be ascertained.

Figure 32 also shows the predicted acoustic loss factors for a heavily damped (almost critically damped) trim lining. Damping is seen to suppress the tendency to predict the upward excursion at about 250 Hz. This is the frequency where the trim model predicts a resonance of the lining on the insulation (see Ref. (6) for some examples of similar predictions).

Since the trim transmission loss is also at its predicted maximum negative value, there remains a question as to whether or not this predicted behavior should be suppressed by choosing a large $\eta_{\mathrm{T}^{\bullet}}$. An answer will be given after the interior noise predictions are examined.

3.5.3 Interior sound levels

Figures 33 and 34 give the predicted interior sound levels. They are plotted on the measurements from Figure 21 (and Table 5). In both cases the input data used are from Table 6. However the original PAIN blocked pressure model (that of a 6 dB increase) was used for the predictions in Figure 33 and the pressure increase was limited to 4 dB in Figure 34. This latter model is more consistent with the results of Figure 29 and thus the latter predictions are those that will be compared with the measurements. The differences between the predictions and the measurements that are plotted in Figure 34 are shown in Table 10.

Statistical Evaluation

Of interest is whether there is a statistically significant difference on the average between the predictions and measurements. Stated another way, are the predictions biased? To determine this, the differences $\Delta_{\bf i}$, ${\bf i}=1,\,2,\,\ldots,\,n$ between the predictions and the measurements are computed and their mean $\bar{\Delta}$ and standard deviation s determined. Next a standard hypothesis test is performed (10). The hypothesis is that the true mean difference μ_{Λ} ($\bar{\Delta}$ is its estimator) is zero, i.e.,

$$H_{\Omega}: \mu_{\Lambda}=0$$

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 33. MEASURED AND PREDICTED LEVELS INSIDE MODEL FUSELAGE INDUCED BY PROPELLER

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 34. MEASURED AND PREDICTED SOUND LEVELS, BLOCKED FIELD LIMITED TO 4dB MAXIMUM INCREASE

Table 10. Predicted Versus Measured Space Average Sound Pressure Levels

RPM	Harmonic	Freq.	SPL _H (dB)		
	H	(Hz)	Predicted*	Measured*	$^{\Delta_{ exttt{i}}}$
3000	1	150	63.3	81.0	-17.7
	2	300	66.2	69.1	-2.9
	3	450	59•5	52.9	6.6
4000	1	200	91.7	90.3	1.4
	2	400	78.2	80.3	-2.1
	3	600	71.3	65.2	6.1
5000	1	250	86.4	100.2	-13.8
	2	500	91.1	91.5	-0.4
	3	750	75•7	74.0	1.7

^{*} From Fig. 34, η_{T} =0.13 * From Table 5

Here the sampling distribution of $ar{\Delta}$ is

$$\bar{\Delta} = \operatorname{st}_{n-1} / \sqrt{n}$$
 ,

where t_{n-1} is the Student "t" variable with n-1 degrees of freedom. For a two-sided test at the α level of significance, $\bar{\Delta}$ must fall within the acceptance region given by

$$-st_{n-1;\alpha/2}/\sqrt{n} \leq \overline{\Delta} \leq st_{n-1;\alpha/2}/\sqrt{n}$$

In the present case, the region of acceptance will be taken quite narrow by first selecting $\alpha = 0.1$. Selection of this high level of significance increases the possibility of a so-called Type I error where the hypothesis may be rejected when in fact it is true.

The hypothesis test is performed a number of different ways. First, all of the data are pooled providing a sample size n = 9 (3 rpm x 3 harmonics). The sample mean and standard deviation are computed to be

$$\bar{\Delta}$$
 = -2.32 dB; s = 8.32 dB.

For the two-sided test at the $\alpha = 0.1$ level of significance

$$t_{8;0.05} = 1.86$$
 ,

and the acceptance region for the hypothesis is

Since the sample mean $\overline{\Delta}$ (= -2.32 dB) falls within the acceptance region, the hypothesis is accepted. It is also accepted

if the level of significance is increased to $\alpha = 0.2$ (Table 11).

Next the hypothesis is tested by considering the data for each propeller speed and harmonic separately. In these cases, the sample size is n=3 and $t_{2;0.05}=2.92$. The values of $\overline{\Delta}$ and s and the acceptance regions are given in Table 11. Results for $\alpha=0.2$ level of significance are shown for these tests also.

For the test where all nine datum are considered, there is not a statistically significant difference on the average between predictions and measurements. However, there is a substantial random error indicated by a standard deviation of 8.32 dB. A discrepancy of more than 8 dB can be expected for about one out of three predictions.

When the test is performed by rpm, the hypothesis is accepted in all cases. However, there is also significant random error.

Testing by harmonics leads to acceptance of the hypothesis for H=1, and rejection for H=2 and H=3 at the highest level of significance (each test by harmonic leads to acceptance at a lower level of significance say $\alpha=0.05$). Rejection of the hypothesis for H=2 and H=3, is an admission of bias being present. However the sample mean error and standard deviation are small.

If data for H = 2 and H = 3 are pooled (n = 6), the hypothesis is accepted even at the α = 0.2 level of significance.

Discussion of Results

Although the hypothesis tests have led to the conclusion that

Table 11. Sample Statistics and Acceptance Regions for Interior Sound Levels (Table 10)

Hypothesis Test on	Samy Statis $\overline{\Delta}(dB)$	stics	Level of Significance &	Acceptance Region (<u>+</u> dB)	Accept?
All 9 datum (3 rpm x 3	-2.32	8.32	0 . 1	5•15 3•87	yes yes
harmonics) 3000 rpm (3 harmonics)	-4•67	12.24	0.1 0.2	20.63 13.32	yes yes
4000 rpm (3 harmonics)	+1.8	4•38	0.1 0.2	7•36 4•76	yes yes
5000 rpm (3 harmonics)	-4•10	8•47	0.1	14•27 9•22	yes yes
H=1 (3 propeller speeds)	-10.0	10.09	0.1	16.99 10.98	yes yes
H=2 (3 propeller speeds)	-1.8	1.28	0.1	2•15 1•39	yes no
H=3 (3 propeller speeds)	-4.86	2.58	0.1	4•33 2•80	no no
H=2 + 3 (3 propeller speeds)	+1.53	4•08	0.1	3•40 2•46	yes yes
8 datum (H=1, 3000 rpm excluded)	1 -0.4	6.41	0.1	4.28 3.20	yes

there is some bias in the predictions, the error that has been identified is not large and is considered an acceptable error at this time (after flight comparisons, its acceptability will be re-examined). The large random error is due to inaccurate predictions of the interior levels at the blade passage frequencies. Now a discrepancy of 4 or 5 dB might (barely) be tolerated for one out of three predictions, but 8 or 9 dB cannot be tolerated. To determine whether further modifications are necessary (beyond those of Appendix A), it is necessary to closely examine PAIN predictions.

Appendix B contains the basics of the PAIN output for the three propeller speeds. The first 48 structural modes are listed (out of 300 total used); also the first 48 acoustic modes (out of 400 total). The distribution of modes in onethird octaves is then given. Next the calculated trim properties are presented. The Trim Factor, dB, is a transmission loss (negative implies an increased transmission). Following these data the propeller noise input is tabulated for the first three harmonics. Data input for the grid of Figure 3 are used to create the data for the large (16 x 19) grid as discussed in Section 3.4.2. Note L=1+9, so the data for l=1 to 10 of Figure 3 are found in L=10 through 19. The tone transmission predictions come next followed by a tabulation of the five highest contributing pairs of acoustic and structural modes that make up the predictions. The propeller noise data and the interior predictions for the 3000, 4000, and 5000 rpm cases are given in sequence.

The lowest computed structural mode occurs at 188.5 Hz. From the values of the generalized mass, it can be seen that this is a floor mode since most of the contributing energy is in the floor (the output of MRP can be used to see the mode shape

if desired). Note that the first true cylinder (shell) mode occurs at 301.9 Hz, followed by another at 318.7 Hz and another at 346.7 Hz and 470.5 Hz, etc. Since the first harmonics (blade passage frequencies) occur at 150 Hz, 200 Hz, and 250 Hz, all shell (sidewall) modes are being driven below their resonance frequencies (primarily because the model cylinder is too short) and respond in "stiffnesslike" fashion for H=1. However, the frequencies of the second and third harmonics are at 300 Hz or above and in these cases, resonance and mass controlled structural modes are usually dominant contributors.

Consider the cases for H=1. Floor modes dominate transmission at 3000 and 4000 rpm. The shell mode at 301.9 Hz is contributing substantially at 5000 rpm, as is another shell mode (number 8) at 318.7 Hz. Both are stiffness controlled.

The H=2 cases are as follows: At 3000 rpm, the shell mode at 301.9 Hz is resonant and dominates the transmission. A mass controlled shell mode at 346.7 Hz dominates at 4000 rpm. A mass controlled mode at 470.5 Hz dominates at 5000 rpm. The latter mode has significant sidewall and floor motion.

The H=3 cases (all rpms) are a "mixed-bag" in that the predictions are dominated by structural modes having significant sidewall and floor motion.

Now consider the predicted trim TL. Note that at 150 Hz it is about -7 dB, at 200 Hz, -17.3 dB, and at 250 Hz, -4.8 dB. The large negative value might at first appear to cause the prediction for H=1 (at 4000 rpm) to be better than it would have been had this behavior not been predicted. However the trim model compensates for this and when the resonance effect is forced to disappear by increasing $\eta_{\rm T}$, the prediction for the 4000 rpm, H=1 case changes only slightly (as will be seen shortly).

Note the acoustic mode dominating the transmission. For H=1 at 4000 rpm, it is mode 3 (q=2,i=0) at 187.6 Hz. This mode dominates only for small η_m . Also note that acoustic modes 6, 7, and 8 have very high loss factors (0.6-0.7). These high loss factors will be predicted only when and where the trim resonance is predicted. Now if η_m is increased significantly, say to 2, the trim resonance effect will disappear (the trim TL changes to +1.2 dB at 160 Hz, +4.6 dB at 200 Hz, and +8.7 dB at 250 Hz). Simultaneously, the high values of the acoustic loss factors of modes 6, 7, and 8 will fall. $\eta_{\rm n}$ is reduced to 0.088 for mode number 6, 0.077 for mode 7, and 0.081 for mode 8. Moreover, with the larger $\eta_{\rm m}$, the prediction for H=1 at 4000 rpm is dominated by the response of modes 7 and 8 (not 3 anymore). Yet even with these dramatic differences, the predicted interior level is about the same (91.2 dB as opposed to the original 91.7 dB).

The predicted results for the case of $\eta_{\rm T}=2$ are given in Figure 35 and Table 12. As can be seen the errors (compared to those in Table 10) remain about the same. However the H=1, 5000 rpm prediction is significantly better. As before, the H=1, 3000 rpm prediction has the largest discrepancy. This particular datum is unique in that the blade passage frequency lies in a region where non-resonant behavior of the cavity is necessary (150 Hz lies between the first and second acoustic modes). It is not felt to provide a good test for the PAIN model, and for this reason, the H=1, 3000 rpm datum is tossed out. The other eight remain (a case could probably be made for throwing out the data for all of the H=1 cases because of the known difficulty of making predictions in the stiffness-controlled region).

Now when the hypothesis test is performed on the data in Table 10 (with the H=1, 3000 rpm datum excluded), the mean error and standard deviation are found to be

$$\bar{\Delta}$$
 = -0.4 dB; s = 6.4 dB,

Table 12. Predicted Versus Measured Space
Average Sound Pressure Levels

RPM	Harmonic	SPL _H (A	
	H	Predicted*	Measured	Δ _i
3000	1	62.1	81.0	-18.9
	2	65.5	69.1	-3. 6
	3	56.9	52.9	4.0
4000	1	91.2	90.3	0.9
	2	73.8	80.3	-6.5
	3	67.4	65.2	2.2
5000	1	92.9	100.2	- 7•3
	2	89.6	91.5	-1.9
	3	74.0	74.0	0.0

^{*} η_{T} =2.0 to suppress predicted trim resonance

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 35. MEASURED AND PREDICTED SOUND LEVELS, BLOCKED FIELD = 4dB (MAX), CRITICALLY DAMPED TRIM PANEL

and the acceptance region is ± 3.2 dB at the α =0.2 level of significance. The hypothesis is still accepted, and the random error is almost tolerable. Performing the hypothesis test on the data of Table 12 with the H=1, 3000 rpm datum excluded, the mean error and standard deviation are found to be

$$\bar{\Delta} = -1.5 \text{ dB}$$
; s = 4.05 dB

and the acceptance region (for α =0.2) is $^{+}$ 2.0 dB. In this case also the hypothesis is accepted. Moreover here, the random error is felt to be (barely) tolerable (s=4 dB).

It can now be safely stated that the PAIN model seems to work. It has done a reasonably good job of predicting the scale-model test results, and its testing in application to real aircraft is needed next.

4.0 PROGRAM UTILIZATION: FULL SCALE AIRCRAFT

Capabilities and limitations of the PAIN software for flight predictions in the case of real aircraft are considered in this section. Basically the focus here is on learning about some of the types of problems that a user will be confronted with when a particular aircraft is selected for study. As will be shown, PAIN has some limitations. But in many respects these are not major problems for the user. The software is capable of making predictions for practically any aircraft configuration. There are limits as to the number of propeller harmonics that should be attempted, and there are circumstances where the propeller noise field on the fuselage may decay too slowly (spatially, away from the propeller plane) for the user to be assured that a valid prediction is being made.

4.1 Modeling of the Aircraft

A useful approach to the modeling of an aircraft is to begin with a sketch such as shown in Figures 36, 37, or 38. three aircraft are used to illustrate the type of geometric information that must be generated. For instance, the length of the fuselage cylinder must be defined. This can be taken as the actual length of the cylindrical section. It should be kept in mind that there is room for judgement here. It may be confirmed in the future that the cylinder should be longer than the cylindrical section of the fuselage (i.e., that better predictions will be made if it is assumed to be). But presently this length is chosen on the premise that details pertaining to the termination of the cylinder are going to wash out in the frequency range where the tone transmission is of concern. That is, some errors in the modal characteristics in the low frequency range will be accepted, assumed inconsequential as to

ORIGINAL PAGE IS OF POOR QUALITY

SCALE: 1 in = 5m

FIGURE 36. BUSINESS/COMMUTER AIRCRAFT

Scale: 1 in = 5m

FIGURE 37. SMALL BODY AIRCRAFT

FIGURE 38. NARROW BODY AIRCRAFT - PROPFAN CONFIGURATION

their effects at the blade passage frequency and its harmonics. After the length L is determined, the remainder of the information will be fixed by the aircraft configuration. The location of the propeller, given by the radius r_p , angular position ϕ , and axially by z_p is to be specified. These parameters are exactly the same as defined in Figure 2.

The three aircraft shown have been chosen to illustrate the ranges of parameters which will likely confront the user. In most circumstances the propeller will be larger in diameter than the fuselage. This will almost always be true whenever there are only two engines (propellers), and will lead to a limitation on the allowed range of the propeller tip clearance. The PAIN software is designed to take the propeller noise signatures over a grid that covers a length of the fuselage equal to 15 Δ , where Δ is given by $\pi a/18$, and a is the fuselage cylinder radius. For the business aircraft shown in Figure 36, the grid length is 0.24L or 0.82D,. For the small body aircraft of Figure 37, it is 0.23L $(\bar{0}.82D_n)$ and for the narrow body aircraft of Figure 38, the grid length is 0.21L (1.30D_). The optimum is to have a long grid length, i.e., as a percentage of both L and D_p . Over the length of the grid, it is desirable to have a significant decay in the sound pressure levels (at each harmonic) to assure that most of the acoustic energy is being taken into account. The grid length is fixed by the radius of the fuselage, thus when the propeller diameter is significantly larger than the diameter of the fuselage, there is concern that the propeller noise field may not decay rapidly enough over the length of the grid. This concern is aggravated by the fact that the cylinder length to diameter ratio (L/D) of a typical fuselage (cylinder) is in the range between about 5.3 and 6.3, and thus the grid is never going to cover more than about 20-25% of the length of the fuselage cylinder. To top this off, the decay of the propeller field on the fuselage is highly dependent on the propeller tip clearance.

Consider the airplane in Figure 36. The diameter of the propeller is more than a meter larger than the diameter of the fuselage. The tip clearance is 0.165m or 0.06 D. lected grid location, with the axial index k=8 lying in the propeller plane (i.e., k=k,), puts the forward-most position on the grid at $x_3=7\Delta$ or 1.52m (0.38 D_p). The aft-most position is $x_3 = -8\Delta$ or -1.18m (-0.44 D_D). Figure 39 shows that the overall sound level at the forward-most grid point $(k=1, \ell=1)$ can be expected to be about 10 or 11 dB below that at the propeller plane. At the aft-most grid point $(k=16, \ell=1)$, it can be expected to be 13 or 14 dB below the level at the propeller plane. But if the tip clearance is increased to 0.2 D these values would drop to only 4 dB and 6 dB respectively (see Figure 37). Thus if the tip clearance exceeds about (0.2 to 0.3) · D, the PAIN model probably should not be used. However this is not an unbendable rule. The spatial decay of the overall level as plotted versus tip clearance in Figure 39 is usually dominated by one harmonic (the blade passage frequency). The 2nd and higher harmonics will decay more rapidly. Figure 39 can be used as a guide to gain some insight into the likely nature of the computed propeller noise field. However, ultimately, the predictions made with the propeller noise program must be used to determine if sufficient spatial decay is present.

The axial location of the grid is to be selected such that the peak overall sound level occurs as near to the center of the grid as is possible. In the turbo-prop circumstance, since the tip clearance is limited to about 0.2 D_p to 0.3 D_p, the grid should be located with the axial index k_p set to 8 or 9. The entire grid must be located on the fuselage cylinder, thus there is a requirement that $\Delta \cdot (k_p-1) < z_p$.

For instance, in Figure 36, k_p must be 8 or less. Since k_p = 8 (or 9) is optimum, the choice is 8 in this case. For the aircraft of Figure 37, k_p could be selected as high as 13 and the grid would still remain entirely on the cylinder. However again the optimum value is 8 or 9, so 8 is the selected value.

In a Propfan configuration, the tip clearance will be increased significantly because the exterior levels will be so intense. The tip clearance shown in Figure 38 is 0.8 D_p . At the flight Mach number M = 0.8, the peak overall sound pressure level will occur aft of the propeller plane. Reference 12 has been used to predict that the axial location of the peak level will be $x_3 = -0.4 \ D_p$. Predictions are that the exterior levels for the Propfan configuration will decay more rapidly than for a turbo-prop. In the present circumstance, the decay is expected to exceed 10 dB at the extremes of the grid even though the tip clearance is quite large. In this particular case, in order to center the grid about the peak overall level (i.e., have the peak lie somewhere between k = 8 and k = 9), a value of $k_p = 4$ is selected.

The noise signatures (Fourier amplitudes and phases for each harmonic) are to be computed at the 160 grid points as given in Section 3 of Reference (2). That calculation completes the description of the exterior pressure field required by the PAIN program.

4.2 Modeling for Cabin and Fuselage Modes

The next step is to determine the modal properties of the fuselage (both the structural and the acoustic properties).

4.2.1 <u>Cabin</u>

The 2-dimensional (cabin cross-sectional) modal properties are

computed with the program CYL2D. That program requires the floor angle $\theta_{\rm O}$ as an input. Figure 40 shows typical cabin cross sections such as might correspond to the three aircraft being studied here. In the cases of the small body and narrow body aircraft, the floors extend from sidewall to sidewall. The intersection of the floor surface (or its extension) with the sidewall skin defines the floor angle. CYL2D computes the mode shapes in 2-dimensions for a cylinder with floor partition having unit radius. Thus the cabin diameter is of no concern until the PAIN program utilizes the CYL2D output file.

Business aircraft such as that of Figures 36 and 40 typically have a rather small diameter and a recessed aisle. In the present case a floor angle of 50° is selected because 70% of the floor surface is at the level defined by $\theta_0 = 50^{\circ}$. Moreover, when the structural modes are computed, the cabin sidewall surface should match the cabin space. In the present case, the cabin floor lays over frames with webs extending downward to the shell. Thus it is desirable to model the shell-floor juncture as rigid at the floor line, i.e., to place the floor at 50° . Since the angles θ_0 appearing in the acoustics program CYL2D and the structural program MRP must match, 50° is the best overall compromise.

The headliners and baggage storage (shown in phantom in Figure 40) are ignored. Presently CYL2D cannot handle these details.

4.2.2 Fuselage

The next step is to prepare the input data for the program MRP. Table 13 contains the type of structural information that is

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 40. CABIN FLOOR ANGLES

Table 13. Selected Fuselage Characteristics

Œ
<u> </u>
\rightarrow
_

ITEM	Business	Small body	Narrow body
Fuselage diameter, D	1.68m	2.29m	3.75m
Fuselage cylinder length, L	9.27m (L/D=5.4)	13m (L/D=5.7)	23m (L/D=6.1)
Cabin length, L	$7.75m (L_{s}/D=4.6)$	11.5m (L _c /D=5.0)	$21m (L_c/D=5.6)$
Cabin width	1.57m	2.14m	3.55m
Cabin height	1.45m (max,aisle)	1.61m	2.3m
Floor angle, θ_{λ}		62 . 6 ⁰	73.70
Skin thickness, range (assumed),	0.81-1.27mm	0.81-1.27mm	1.02-3.05mm
Equivalent shell thickness, t	1.64mm	1.93mm	2.43mm
Surface density (skin+stiff- eners), m	4.54kg/m ²	5.34kg/m ²	6.73kg/m ²
Structure/cavity offset, d	0.0m	0 . 0m	0°0m
Frame spacing, $1_{\mathbf{f}}$	0.38m	0.33m	0.51m
Stringer spacing, 18	0.183m	0.13m	0.23m
Frame cross-sectional area, AR	8.89×10 ⁻² m ²	$9.4 \times 10^{-5} \text{m}^2$	$1.76 \times 10^{-4} \text{m}^2$
Frame moment of inertia reshell (skin) inner surface, I	9.218×10 ⁻⁸ m ⁴	1.988×10 ⁻⁷ m ⁴	7.878×10 ⁻⁷ m ⁴
Frame bending rigidity, DR9	$1.756 \times 10^{4} \text{ n.t.m}$	4.362x104nt-m	1.118x10 ⁵ nt-m
Stringer cross-sectional area,	7.16x10 ⁻⁵ m ²	4.98×10 ⁻² m ²	1.03×10 ⁻⁴ m ²
Stringer moment of inertia, I	6.85x10 ⁻⁹ m4	3.397×10 ⁻⁹ m ⁴	4.036x10-8m4
Stringer bending rigidity, D _{xs}	2.712x10 ⁵ nt-m	1.892x10 ³ nt-m	1.271x10 ⁴ nt-m
	فيدالان فيدور والمراج والمراج والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع		

Selected Fuselage Characteristics (Continued)

TYPE

ITEM	Business	Small body	Narrow body
Floor plate thickness, tp	1.01mm 4.18kg/m ²	1.27mm 5.29kg/m ²	1.63mm 7.83kg/m ²
Ing Stilleners), up Floor surface density (includ-	13.66kg/m ²	19.68kg/m ²	23.64kg/m ²
Ing Beating), mp Equivalent floor thickness, te	1.51mm	1.91mm	2.83mm
Transverse floor beams Spacing, l	0.38m	0.33m	0.51m
Cross-sectional area, Ay	$1.07 \times 10^{-4} \text{m}^2$	$8.53 \times 10^{-2} \text{m}^2$	$3.85 \times 10^{-4} \text{m}^2$
Noment of inertial relations of floor, Iy	$7.48 \times 10^4 \text{nt-m}$	4.362x10 ⁴ nt-m	6.98x10 ⁵ nt-m
I Longitudinal floor beams	0.43m	0.13m	0.23m
Cross-sectional area, Ax	$1.45 \times 10^{-4} \text{m}^2$	4.98×10-5m2	1.03×104m ²
Moment of inertia re lower surface of floor, I.	9.33×10 ⁻⁷ m ⁴	3.397×10 ^{-9m4}	4.036x10 ⁻⁸ m ⁴
	$1.57 \times 10^{5} \text{nt-m}$	1.892x10 ³ nt-m	1.271x10 ⁴ nt-m
Trim Insulation thickness, h _t	0.055m	0.075m	0.1m
Lining surface density, m _t	1.61kg/m ²	1.61kg/m ²	1.61kg/m ²
Material (fuselage)	2024-Aluminum	2024-Aluminum	2024-Aluminum Alloy
Elastic modulus, E	$7.24 \times 10^{10} \text{ nt/m}^2$	$7.24 \times 10^{10} \text{nt/m}^2$	$7.24 \times 10^{10} \text{ nt/m}^2$
Density, ρ	$2.77 \times 10^{3} \text{kg/m}^{3}$	2.77x10 ² kg/m ²	2.77x10 ² kg/m ²

needed. Typical values of section properties are given which allow comparisons between the smaller and larger aircraft. Structural details of fuselage and floor stiffening elements are required before the type of data in Table 13 can be generated. Stiffener properties, skin thicknesses, shell and floor surface densities, and seating arrangements are needed.

Note in the table that there will almost always be a variation in the fuselage skin thickness. Some value t_s must be chosen, and an average is recommended.

Usually the shell frame and stringer properties and their spacings l_f and l_s will be uniform. The stiffener cross-sectional areas A_R and A_s are used with the spacings to determine the equivalent shell thickness, i.e.,

$$t_e = t_s + A_R / l_f + A_s / l_s$$

The shell surface density (including skin and stringers) is then $m=\rho t_e$, where ρ is the mass density of the material (it is assumed that skin and stiffeners are of the same material).

The moments of inertia of the frames and stringers are to be computed about the inner surface of the skin. The values given in Table 13 are for the typical stiffeners shown in Figure 41. The shell bending rigidities are defined by

$$D_{R\theta} = EI_f/l_f$$
; $D_{xs} = EI_s/l_s$

The floor properties are similarly computed, however, there is usually going to be a greater degree of flexibility in the modeling of the floor because many of the floors are not free standing (do not run unsupported from sidewall to sidewall). In the business and small body aircraft, the floor is normally

ORIGINAL PAGE IS

Business Aircraft

Dimensions in millimeters
FIGURE 41. TYPICAL AIRCRAFT CONSTRUCTION

built over webs formed by increasing the depth of the shell frames. In the case of the business (smallest) aircraft, the assumed properties of the transverse floor beams are based on the material depth beneath the aisle floor, that is, that which remains after material already assigned to the shell frame is excluded. In the present case, the floor frame depth is taken to be 0.105m (refer to Figure 40).

The transverse floor beams on the small body aircraft (which can be properly described as extensions of shell frames) should be assumed to have a working depth (below the floor) no greater than the height of the frame web above the shell skin required to yield the frame stiffness. Simply define the floor frame (transverse beam) such that its stiffness equals the shell frame stiffness. Once the floor stiffness gets that large, it should not matter that there may yet remain some uncertainty as to its actual working stiffness.

Generally properties of longitudinal floor beams should be determinable from drawings. For the small and narrow body aircraft here, they are simply taken to be roughly equivalent to the shell stringers. Intercostals should be accounted for as increased mass and stiffness (i.e., thickness) of the floor plate if necessary.

In actual case of narrow body aircraft, where the floor extends sidewall to sidewall, floor stiffeners (beams) should be identifiable from drawings. Table 13 contains some estimates of their section properties.

The business aircraft is complicated by the presence of the aisle. The longitudinal floor beams here are assumed to be the walls of the aisle (0.14m high) with thickness of 1.02mm and an average spacing of 0.43m. This leads to a very stiff floor

(fore-to-aft).

The bending rigidities of the floor stiffeners are given by

$$D_{yp}=EI_y/l_y$$
; $D_{xp}=EI_x/l_x$

and the equivalent floor thickness is

$$t_e^p = t_p + A_x / l_x + A_y / l_y$$

Program MRP will accept both the equivalent floor thickness and the floor surface mass per unit of area. The latter is

 $\mathbf{m} = \boldsymbol{\rho} t_{e}^{p} \quad ,$ i.e., if there is no dead weight on the floor. The dead weight of seats must be added when seating is present since the seats are rigidly attached to the floor or to the supporting floor The passenger load is assumed to be dynamically isolated.

On the business aircraft of Table 13, 11 seats have been assumed at 8.62 kg/seat (19 lb/seat). The distributed surface mass becomes 13.66 kg/m² (as opposed to 4.18 kg/m² without seats). In the case of the small body aircraft, 13 seat rows with 3 seats per row (19 lb/seat) yields a floor mass of 19.68 kg/m2 (as opposed to 5.29 kg/m² without seats). For the narrow body aircraft, 23 seat rows with 6 seats/row increases the floor mass to 23.64 kg/m² (as opposed to 7.83 kg/m² without seats). seating mass per unit of area is based on cabin floor area (length L_c) since this leads to the highest value of m_n . important thing to note here is that the total dead weight of the loaded floor when seats are present may be 2 or 3 times the combined weight of the floor and its supporting structure. A reasonable estimate for seating loads should be included.

4.3 Modal Characteristics of Typical Airplanes

The aircraft selected for the present study represent significantly different scales in terms of size and stiffness of fuselages. The largest aircraft conforms to a narrow body, and it was selected because it is considered to be the largest turboprop airplane likely to be encountered by a user of the PAIN program. The two "small diameter" aircraft (small body and business) are typical short-haul or commuter configurations. The relative sizes of these airplanes can be judged quickly from Figures 36, 37, and 38, where they are drawn to the same scale.

Modal characteristics of each fuselage (cabin and structure) will determine the correct way to use the PAIN program. Modal spectra will determine the maximum number of interior propeller harmonics that can be computed and also the particular computation procedure required. The modal characteristics of larger aircraft impose more severe requirements for vigilance on the part of a user. Even so, it will be found that there are no debilitating restrictions even in the case of the largest aircraft considered herein.

4.3.1 Acoustic Modes

The PAIN program creates 400 acoustic modes for use in the interior noise calculations. These are constructed by combining the CYL2D output file (resonance frequencies and mode shapes of the twenty 2-dimensional modes (i = 0 to 19) of the cabin of unit radius) with twenty axial modes whose index q (that defines shapes and frequencies) ranges from 0 to 19 also. The resulting modal array (or file) is not complete.

Consider, for example, the computed acoustic modes for the cabin of the smallest (or business) aircraft (see Appendix C). lowest resonance frequency (q = 1, i = 0) is predicted to be The last mode in the list (q = 19, i = 19) is predicted to occur at about 665 Hz. The (q = 19, i = 0) mode (No. 184) occurs at 420.5 Hz. There are modes missing in the list (file) above this frequency. The first is the (q = 20,i = 0) mode at 442.6 Hz. Since modes of the type (q > 19, i =0) do not appear, there are a number of modes missing in the range between 420.5 Hz and 665 Hz, but they are widely scattered. The (q = 19, i = 1) mode occurs at 436.1 Hz. Above this frequency, modes of the type (q > 19, i = 1) are missing. (19, 2) mode occurs at 441.3 Hz and above this frequency modes of the type (q > 19, i = 2) are not included, and so on. as one nears the bottom of the file (the higher frequencies), there are more and more missing modes.

PAIN uses all of the acoustic modes in the list (regardless of their resonance frequencies) to calculate the interior levels for a given propeller harmonic. Usually (and as has already been verified in the scale model studies) acoustic modes that are resonant close to the harmonic frequency will contribute most to the predicted interior level. As long as PAIN has data for modes near a given harmonic, it can predict the interior level using a (preferred) low frequency calculation procedure (that procedure was used in the scale model studies of Section 3). However, if the modal information for the cavity is not available (or incomplete), a high frequency calculation technique must be utilized. That procedure does not rely on the specific acoustic modal properties.

Consider then the business aircraft, and assume a blade passage frequency of say 102 to 107 Hz. Further suppose that results for the fifth harmonic will be sought. The highest frequency

of concern will then be 535 Hz. The fourth harmonic could be as high as 428 Hz. It is seen that at least four harmonics can be computed with the low frequency procedure since the modal list is complete up to 442.6 Hz. The acoustic modal density is so great, that a missing mode or two (near the fifth harmonic) would not disallow use of the low frequency procedure for the fifth harmonic also. However knowledge of the missing data in that region would be useful. Remember that the calculation with the high frequency procedure is always output, so it is useful to obtain the low frequency result also whenever possible, even when the harmonic lies in a region where the modal file is incomplete.

Next consider the intermediate size fuselage (small body). The cabin has its lowest acoustic mode at 14.9 Hz; the last mode in the file is 486 Hz. The file is complete below 298.3 Hz. Thus if the blade passage frequency is in the range of 110 Hz or so, 3 harmonics can probably be predicted with the low frequency procedure. The fourth should be computed with that procedure also (although it will be an incomplete calculation), and the fifth would have to be done with the high frequency technique.

The cabin of the narrow body aircraft has its lowest acoustic mode at 8.2 Hz. The last mode in the file is at 297 Hz. The file is complete below 163.3 Hz. In the Propfan configuration with a blade passage frequency of say 165 Hz, only one harmonic can be computed with the low frequency procedure. If results for five harmonics are desired, the remaining four must be obtained with the high frequency procedure.

4.3.2 Structural Modes

The modal data file which is created with program MRP and then conditioned with MRPMOD is needed for two purposes: (1) for

calculating the generalized (or modal) forces $\Psi_{G}(r,H)$ for the propeller noise excitation, and (2) for calculating the structure-interior coupling functions $\bar{f}'(n,r)$. (Note: r is the structural mode index, n is the acoustic mode index, and H is the propeller harmonic index.)

The structure-interior coupling functions are needed in the low frequency procedure. Calculations with that procedure are not possible if either the acoustic or the structural modal files do not extend beyond the harmonic frequency of concern. But PAIN can make an interior prediction even if the acoustic data file is exhausted. It can bypass the calculation of $\bar{f}'(n,r)$ by going to the high frequency procedure.

The modal forces, $\Psi_{\rm G}({\bf r},{\bf H})$, on the other hand, must always be computed, that is, for use in either the low or the high frequency procedure. Once a harmonic is selected, the corresponding modal forces (for all modes) must be computed. Although the entire file is utilized, it is important that the file extend beyond the frequency of the harmonic being calculated. This is required because structural modes resonant in a fairly wide region centered about the harmonic will (likely) contribute most to the interior levels. (This was found to be true in the scale-model predictions of Appendix B.)

ANOPP Imposed Limitations

The accuracy of the NASA ANOPP propeller noise prediction program (or any other comparable program) is suspect beyond the fourth or fifth harmonic. ANOPP should not be used to create input data for PAIN beyond the fourth or fifth propeller harmonic. This is not a critical deficiency. The highest exterior levels will be in the lowest few harmonics and the attenuation afforded by the structure will be lowest at the bottom

end of the frequency spectrum also. This means that the capabilities of the PAIN program can be reasonably examined in terms of computing, say a maximum of five interior harmonics.

Program Changes to MRPMOD

The sizes of the fuselage cylinders of concern in Table 13 suggest that a software modification be made to enhance the potential utility and completeness of the structural modal file, i.e., to extend it to as high a frequency as is practical. To this end, before beginning any computations, the MRPMOD program is modified to accept an increased eigenvector output from the program MRP, i.e., 40 eigenvectors (20 symmetric and 20 antisymmetric) instead of thirty. A total of 440 structural modes can then be predicted with an allowable range of axial mode numbers M from 1 to 11. The number of axial halfwaves M is limited to 11 because a maximum of 450 modes can be used by PAIN (12.40=480>450). The structural program MRP itself need not be changed since it can be made to compute all of the modes required simply by specifying the maximum value of M and the number of eigenvectors desired. "Dimension" statements must be changed in MRPMOD to allow it accept the MRP output. Because of the increased size, the new output file from MRPMOD (that to be used by PAIN) must become a direct access instead of an indirect access perma-This requires some changes in the control statements for MRPMOD and PAIN (see Appendix A for more details).

Typical Results

The lowest structural mode of the fuselage cylinder of the business aircraft of Table 13 is predicted to occur at 39.6 Hz and is given in the "Structural Modes" list that is output by the PAIN program and which summarizes the MRPMOD output file

(Appendix C). The last mode in the file, i.e., the 400th mode in this case (since M is limited to 10 for the present) is predicted to occur at 2054 Hz. The corresponding results for the small body aircraft are 23.5 Hz and 1414 Hz and for the narrow body aircraft 13.1 Hz and 823 Hz respectively.

The predicted fundamental resonance frequencies here are considered reasonable. For instance, the narrow body fuselage cylinder is a large aeronautical structure by almost any measure (23m(75 ft) long by 3.75m(12.3 ft) in diameter) and it is quite stiff. A comparable structure once considered in noise studies was the payload bay door of the space shuttle orbiter vehicle (4.87m diameter by 18.3m long). Analyzed by elaborate finite element techniques, it was found to have a fundamental resonance frequency of 7.4 Hz (modeled as an incomplete cylinder (or sector) supported on its edges). Also the bottom structure of the shuttle vehicle (a stiffened curved panel) similarly analyzed had a fundamental resonance frequency of 9.6 Hz.

The question is now raised as to whether the structural modal files are complete over typical required frequency ranges. Aircraft in the turbo-prop configuration will typically have the fifth harmonic below about 550 Hz. In the Propfan configuration this upper frequency could become 825 Hz or more. The main question is whether a reliable prediction of modal forces can be made up to these frequencies.

The structural modal file is much more difficult to analyze in terms of determining its completeness. This is because the fuse-lage cylinder is so complicated. The modal behavior of a stiff-ened cylinder with floor partition is much more difficult to describe than a stiffened cylinder without floor (Ref. 1). As one examines the output of MRPMOD, it is found that for many modes

of a given axial mode index M, the same shell indexes n_s will appear (n_s defines the number of full circumferential waves of a given component of the displacement series used to describe the shell circumferential mode shape). Also, the same indexes n_p (giving the number of transverse halfwaves of a given component of the displacement series used to describe the transverse floor mode shape) may appear as well. But each structural mode is unique. Each has its own set of generalized coordinates that ultimately define the particular mode shape. Each has its own generalized mass. Some of the modes are predominantly floor modes, others predominantly shell modes.

Business Aircraft

The modal file for the business aircraft (PAIN summary in Appendix C) shows that the maximum value of M (i.e., M=10) occurs the first time at the 40th mode (227.7 Hz). It therefore seems logical to assume that a mode with index M=11 will occur soon afterward and that somewhere in the range slightly above 227.7 Hz the file must become incomplete (since M=11 is excluded). Close examination, however, shows that the first M=10 mode is a floor mode. Almost all of the energy of the mode is in flexural motion of the floor. This can be recognized by examining the generalized mass. The shell flexure, w, contributes little to the total modal mass (about 2%). Since this mode will not respond well to the propeller excitation of the sidewall, it is somewhat an extraneous mode (even though listed) and a comparable mode with M=11 would be also.

The adequacy of the file (in the sense of completeness) is assured if when either M, n_s , or n_p reach their maximum values (in this case M=10, n_s =14, and n_p =5) the mode is a genuine shell

mode or at least has some significant flexural energy in the shell. Going down the file, it is seen that the second time M=10 appears is at the 48th mode (250.5 Hz) where the shell flexural modal mass is but 0.2% of the total. M=10 occurs again at the 72nd mode (363.4 Hz) where the shell flexural modal mass has risen to about 24% of the total generalized mass. Somewhere slightly above this frequency, there will begin to be some modes of the type M=11 missing that should legitimately be in the file. Note that by the 147th mode (at 579.4 Hz), where the M=10 index once again appears, the shell modal mass is 89% of the total generalized mass.

There are 8 modes between the 72nd and 147th modes having M=10, all of which have significant percentages of their energy in shell flexure. There will be less than 8 missing modes of the type M=11 below 550 Hz (which is the maximum frequency of concern for the business aircraft). Within a band about 100 Hz wide centered at 550 Hz, there are 29 modes (Modes 124 through 152). There are four modes with M=10. Thus there will be less than four modes with M=11 missing over this range and fewer still with M=12 (perhaps none). It is clear that even though the file is incomplete, if the primary contributing modes to the interior noise are selected (by the program) out of those lying 50 Hz either side of the harmonic (assumed at 550 Hz), there is only a small chance that an M=11 mode will appear as one of the top five contributors and only a miniscule chance that it will be the dominant contributor. Thus, in this case, since $\mathbf{n}_{_{\mathbf{S}}}$ and n are well below their maximum values (i.e., in the range below 600 Hz or so), the modal file can be considered sufficiently complete.

This file can be made complete by including significant flexural (shell) modes of the type M=11 for frequencies below say 650 or 700 Hz. Its length can also be optimized if when M is increased

to 11, the maximum values of n_s and n_p are reduced to 8 and 4 respectively. These values are chosen by examining the printed output of MRPMOD where (in the present case) the 5 terms used in the shell displacement series (i.e., the n_s 's) and the 3 terms used in the floor displacement series (i.e., the n_p 's) and which are passed to PAIN and used to construct the mode shape, lie below the maximums selected. The number of eigenvectors computed by MRP should remain at 40 if this is done.

Small Body Aircraft

Similar results are found for the small body aircraft. Scanning the M=10 modes leads to the following results. The first is the 18th mode (41.4 Hz) with shell flexural modal mass representing 0.04% of the total generalized mass. The second is No. 21 (42.5 Hz) and 0.9%. Then No. 40 (111.0 Hz) and 0.35%; No. 48 (118.1 Hz) and 5.1%; No. 80 (206.8 Hz) and 7.7%; No. 92 (225.6 Hz) and 13.7%; No. 124 (296.6 Hz) and 51.5%; No. 125 (298.3 Hz) and 82.4%; and so on. In these cases n is below its maximum of 14 (never exceeding n = 8 passed to PAIN) and n is 5 or less (it reaches its allowed limit). Here it is clear that the M=11 modes should be in the file beginning at about 300 Hz.

To complete this file, the maximum value of M must be increased, but to no more than 15 (the maximum allowed). It is necessary to simultaneously reduce the number of eigenvectors computed by MRP (changing n or n is irrelevant). Thus 40 eigenvectors can be computed if M=11 is sufficient to complete the file (40·11=440<450), but only 36 if M=12 is required (36·12=432<450) and 34 if M=13 is needed (34·13=442), 32 if M=14 is necessary and 30 if M=15 must be used. The object is to assure that there are few (if any) missing shell modes of the highest M selected below about 650 to 700 Hz (i.e., if five harmonics are to be computed). All modes having the maximum selected value of M with more than

50% of their modal mass in shell flexure should lie 50 Hz or so above the frequency of the highest harmonic to be computed with PAIN.

Narrow Body Aircraft

The narrow body aircraft has its first M=10 mode at 35.2 Hz (mode No. 12). The fifth M=10 mode occurs at 159.9 Hz (mode No. 94) and is the first true M=10 shell mode (shell flexural modal mass=73% of total). Therefore the modal file begins to be incomplete at a frequency well below 550 Hz and very much below 825 Hz. In the case of the narrow body it is concluded that the maximum value M=15 may be required (reducing the number of eigenvectors computed by MRP to a total of 30).

The maximum frequency of a harmonic attempted with PAIN should not exceed the frequency where the highest M mode type has more than say 50% of its modal energy in the cylinder flexural response. Above that frequency, the structural modal file used by PAIN is insufficiently complete. This will probably limit PAIN to 3 harmonics (perhaps 4). While a computation can still be made that will yield an answer for the fourth harmonic (since the incomplete file extends out to 823 Hz), the result will be questionable.

Now as M is increased and the number of eigenvectors reduced, there will begin to be some modes of low order M missing from the file. For example, when the maximum value of M is used and only 30 eigenvectors can be computed, there will be 30 modes listed for each value of M. The 30th mode in the file for any given M will have the highest frequency of any mode of type M. Beyond that frequency there will be modes missing of that type M.

In the present narrow body case (where M is limited to 10) there are 40 eigenvectors or 40 modes listed for each value of M. Consider the M=1 modes. The 40th mode with M=1 occurs at 618.3 Hz and has a major circumferential component $n_s=11$ (11 full circumferential waves). Above 618.3 Hz there are modes missing of the type M=1. Had the number of eigenvectors been limited to 30, the last M=1 mode would have been at 432 Hz. To complete the M=1 modes out beyond the third harmonic (3x165=495 Hz), 36 eigenvectors are needed (the 36th M=1 mode occurs at 503 Hz). Thus the maximum value of M would be limited to 12. This might not be optimum however. It may be necessary to increase the maximum M and allow some modes of low order M to be missing. Each case will warrant an investigation.

4.4 Computation Times

The central processor unit (CPU) times for typical fuselages are given in Table 14. These are for the Control Data Corporation (CDC) CYBERNET Network Operating System (NOS) 176 service (essentially the computer speed is comparable to (but faster than) the CDC 6600 vintage computer). CPU time is a resultant of processing periods and is not clock time. CPU times will vary from computer to computer depending upon speed and program handling. It is a useful measure for comparing speed and costs from computer to computer and for estimating costs and practicality on a particular machine.

The most time consuming is the structural calculation. The program MRP runs all fuselages at about the same speed, regardless of the dimensions (or stiffnesses) concerned. For large numbers of modes, the run-times increase almost in direct proportion to the increase in the number of computed modes. For instance, calculation of a total of 300 symmetric and antisymmetric modes of the scale model fuselage required 1506 secs. When 400 modes

Table 14. Program Run-Times (Typical)

	Program	Calculation	CPU Time (Secs.)
	CYL2D	Floor angle = 56.6°	119
Model	MRP	150 symmetric modes	795
		150 antisymmetric modes	711
Scale	MRPMOD	300 structural modes	66
Sc	PAIN	400 acoustic/300 structural(4Hlf/6Hhf)	249
	CYL2D	Floor angle = 50.00	197
88	MRP	200 symmetric modes	1087
Business		200 antisymmetric modes	1043
usi	MRPMOD	400 structural modes	91
Ā	PAIN	Modal summary/400 acoustic/400 structura	1 82
		400 acoustic/400 structural(3Hlf/7Hhf)	340
	CYL2D	Floor angle = 62.6°	157
<u>></u>	MRP	200 symmetric modes	1049
Body		200 antisymmetric modes	965
	MRPMOD	400 structural modes	90
Small	PAIN	Modal summary/400 acoustic/400 structura	1 95
অ		400 acoustic/400 structural(3Hlf/2Hhf)	300
		400 acoustic/450 structural(3Hlf/2Hlf)	500
	CYL2D	Floor angle = 73.7°	70
Body	MRP	200 symmetric modes	1040
		200 antisymmetric modes	940
roı	MRPMOD	400 structural modes	91
Narrow	PAIN	Modal summary/400 acoustic/400 structura	1 106
		400 acoustic/400 structural(1Hlf/3Hhf)	300

were computed for each of the three aircraft fuselages, the average CPU time was 2041 secs. Thus 33% more modes required an average of 35% more computation time. Therefore it is anticipated that for a case where 450 modes are computed (the maximum number that PAIN will work with), about 2300 CPU seconds will be required.

A complete calculation with PAIN for the scale-model fuselage, utilizing 400 acoustic modes and 300 structural modes (where 10 interior harmonics (H) were calculated; 4 with the low frequency (lf) scheme and 6 with the high frequency (hf) procedure) required 249 secs.

Calculation of 10 interior harmonics for the typical business aircraft using 400 (instead of 300) structural modes required 340 secs. 82 seconds were needed to complete the calculation through the output of the modal summary. The remaining time was used in calculating the modal forces for the propeller noise field and the interior levels (3 harmonics were calculated with the (slower) low frequency procedure).

In the case of the small body aircraft, a maximum of 3 interior harmonics can be computed with the low frequency procedure. 5 interior harmonics (2 using the hf procedure) required approximately 300 secs.

There is a practical limit of 4 interior harmonics for the case of a narrow body aircraft (Propfan configuration). Only one can be obtained with the low frequency technique. The CPU time should be less than 300 secs.

In the extreme case, where say 5 interior harmonics are desired (3 to be calculated with the low frequency procedure), and where the number of structural modes is the allowed maximum of 450, the CPU time for PAIN is expected to be less than about 500 secs.

5.0 FLIGHT TEST COMPARISONS

Flight tests were performed on a trimmed and outfitted Merlin IVC aircraft (corporate version of the Fairchild Industries Swearingen Metroliner III turboprop commuter aircraft). The Merlin IVC is identical to the business aircraft shown in Figures 36 and 40 and the fuselage construction is basically as shown in Figure 41 and as detailed in Table 13.

5.1 Description of Aircraft

The Merlin IVC has twin Garrett TPE331 turboprop engines driving Dowty Rotol four-blade constant speed propellers. The propeller diameter is 2.69 m with a tip clearance of about 0.06 times the propeller diameter. The fuselage is an all metal cylindrical semi-monocoque, pressurized fail-safe structure of 2024 aluminum alloy having a diameter of 1.68 m.

The cabin of the aircraft used in the tests is shown in Figure 42. A bulkhead located at Station 126 separates the crew flight deck from the forward end of the cabin and the aft end of the cabin terminates at Station 437 where a bulkhead (with door) closes off the rear baggage compartment.

The interior of the cabin is trimmed with 0.05 m (2 inches) of PF-105 Fiberglas in mylar bags with a headliner of 3.2 mm (1/8 inch) thick heat-formable Klegecell with two glass face sheets of Tedlar. The trim surface mass is 1.95 kg/m^2 (0.4 $1b/\text{ft}^2$). A relatively small portion of the interior trim surface is covered with decorative Teak wood (less than 10%) and is not felt to warrant consideration in the modeling .

The aircraft tested has leather upholstered seating for eight passengers in the mid and aft sections of the cabin plus a

FIGURE 42. CABIN OF AIRCRAFT SHOWING SEATING AND MICROPHONE LOCATIONS

couch (sofa) of about 1 meter length located in the forward end of the cabin. In addition, food and beverage storage and preparation facilities are present in the forward end.

The seating structure dead weight on the floor spread over Stations 264-437 is about 12.2 kg/m². This same weight spread over the entire length of the cabin gives 6.8 kg/m². An average of these is 9.5 kg/m² which is assumed to be a representative distributed mass. The mass per unit of area of the floor used as an input to MRP is then 9.5 kg/m² plus the weight of the floor and supporting floor structure, i.e., about 4.2 kg/m² (Table 13) yielding a total of 13.7 kg/m². This number is very close to the result used in the studies of Section 4 (and Table 13) so the structural modal file for the business aircraft given in Appendix C is identical to that of the present test aircraft.

The surface area of cabin sidewall trim (floor-to-floor) is given by

$$A_t = 2\pi L_c (a-h_t) (1-\theta_0/180)$$

where θ is the floor angle (50°), a is the fuselage radius (0.84 m), L_c is the cabin length (7.89 m) and h_t is the trim insulation thickness (0.055 m). In the present case A_t is 28.1 m². All absorption in the cabin space is assumed on the sidewall. The forward and aft bulkheads are taken rigid and unabsorbing. This is a simplification because they do absorb and transmit sound. Also it was determined after the tests that the door to the baggage compartment had been inadvertently left open in flight.

The absorption by the seating and carpets is assumed to have negligible influence on the interior sound levels in the range

between 100 and 550 Hz. This assumption can be justified by examining the relative absorption capabilities of the sidewall trim system versus that of the seating. For instance, at 500 Hz, the absorption of a typical upholstered seat would be limited to about 3 Sabins (α S=3 ft² or 0.28 m²). 8 seats plus the couch would give, say 27 Sabins, or an absorption of 2.5 m². The PAIN computed conductance ξ of the sidewall trim for a lightly damped trim panel, say $\eta_{\rm T}$ =0.2, at 500 Hz, is 0.017 and for a heavily damped trim panel, say $\eta_{\rm T}$ =2, it is 0.027 at 500 Hz. The absorption afforded by sidewall trim is therefore at a minimum

$$\alpha S = 8 \xi A_t = 3.8 m^2$$
,

or approximately 41 Sabins. Now it is seen from these numbers that the seating could conceivably lead to a slight reduction in space-average interior levels. However, in the present case, the seating is located in the aft two-thirds of the cabin (except for the couch) and in that region, as will be shown in the flight test data, the sound pressure levels are significantly lower than in the forward third of the cabin. Thus the absorption in the forward third of the cabin is of more concern since total absorption is the product of mean square pressure times α S. In the forward third there is the couch (approximately 3 Sabins) plus carpeting (ignored) plus sidewall trim (approximately 41/3=13.7 Sabins). Thus seating should reduce interior levels by less than 1 dB (on the space average) although the actual reduction may be slightly more in the area where seating is located.

5.2 Test Program

The measurement program consisted of both ground and flight tests. The primary purpose of the ground tests was to obtain some minimal data outside the aircraft so that ANOPP predictions of the propeller noise field could be compared to measurements. No attempt was made to instrument the aircraft to allow in-flight measurements of the propeller field on the fuselage. This was an unavoidable deficiency in the flight tests due largely to the status of the aircraft and the limited time that the plane could be dedicated to the effort. Moreover, ANOPP is unable to predict the actual blocked pressure field on the skin anyway (it calculates free-field levels as previously noted), and therefore it seemed that for the present tests, some relative measure of comparisons on the ground would be sufficient. The quality of ANOPP free field predictions had already been established (such as through the scale-model comparisons presented in Section 3 of this report).

There were a number of different stationary ground tests that were performed while varying propeller speed, torque (pitch), with one prop or the other. However, comparisons between exterior measurements and exterior predictions were never attempted because the ANOPP program was unable to predict the propeller harmonics without significant air inflow velocity to the prop disk. Thus for all practical purposes, the only useful data were the interior measurements made in-flight during the test runs listed in Table 15.

The in-flight data obtained during Runs 2 and 8 were all from fixed microphone measurements. Sound pressure levels were recorded at head (ear) levels with six microphones (1 through 6) as shown in Figure 42. These measurement data cannot be used in the comparisons because space-average interior levels are required and the five microphones in the cabin (2 through 6) were not located to provide that particular measurement. The comparison data were taken in Runs 10, 11, and 12. In these three runs, the airspeed was varied (at the same flight altitude) and swept microphone data were taken at various

Table 15. Flight Tests

Run Number	Airspeed (KIAS)	Altitude (ft x 10 ⁻³)	% RPM* Port/S	% RPM* % Torque Port/Starboard	Cabin Pressure Differential (psi)	Air Temp. (°C)	Fuel Level (1bs)
, ~	192	17.5	26/26	99/99	6•9	9-	2000
8	210	12.0	26/26	09/09	2.9	2	1800
10	238	5.0	26/26	74/74	2.5	12	1700
=	216	5.0	26/26	57/57	2.5	17	1700
12	165	5.0	26/26	35/35	2.5	17	1700

* 97% = 1568 rpm

axial positions along the cabin. The objective was to be able to calculate the space average interior levels for five harmonics at each of the three flight conditions providing a data pool of 15 measurements for comparisons with PAIN predictions. In order to obtain the desired measurements, swept data were to be taken at a minimum of three axial stations. Two of the stations eventually selected are shown in Figure 42, i.e., locations 7 and 8 (in the aisles between the seats), where microphones 5 and 6 were swept by hand following the scheme shown in Figure 43.

During the flight tests, there were no swept measurements made in the forward third of the cabin. The presence of the couch and cabinetry in the forward end did not allow the flight personnel to follow the desired sweeping pattern and a decision was made by them to obtain swept data only at positions 7 and 8 and to retain fixed microphone data at positions 2, 3, and 4 as had been done in Runs 2 and 8. This decision necessitates the use of a rather cumbersome analytical approach to obtain the space-average levels in the cabin. The propeller noise peaks over the forward third of the cabin, and the highest interior levels occur in that region. Any errors made in estimating space-average sound pressure levels in the forward third of the cabin are strongly reflected in estimates of the total spaceaverage levels.

5.2.1 <u>Interior Measurements</u>

To review, the data consist of two basic types of measurements: (1) fixed position microphone data at the head (or ear) level at up to five locations in the cabin (microphone 1 was in the crew flight deck area) and (2) swept microphone data at two fixed axial stations. In Run Nos. 2 and 8, all microphones were fixed at the head (ear) level. In Run Nos. 10, 11, and 12 microphones 2, 3, and 4 were fixed at the head (ear) level (in the same posi-

FIGURE 43. MICROPHONE SWEEP PATH FOR SPACE AVERAGE (ABOUT 15 SEC/CIRCUIT TRAVERSED TWICE)

tions as in Runs 2 and 8) and microphones 5 and 6 were swept at positions 7 and 8. In these latter tests, no fixed head (ear) level measurements were made with microphone 5 or 6.

The cabin can be divided into 3 subvolumes: Stations 126-230, 230-333, and 333-437. The swept microphone measurement taken at position 7 (with microphone 5) is considered to give the space average level in Subvolume 2 (230-333) and the swept measurement taken at position 8 (with microphone 6) is considered to give the same data for Subvolume 3 (333-437). Measurements made with microphones 2 and 3 (which lie in Subvolume 1 (126-230)) are averaged to determine an average head (ear) level μ_1^H for each harmonic. Also, measurements with head (ear) level microphones 4 and 5 which lie in Subvolume 2 in Run Nos. 2 and 8 are averaged to determine an average head (ear) level for each harmonic, i.e., μ_2^H

In summary, let

 μ_{j}^{H} =mean head (ear) level measurement for those microphones located in Subvolume j (harmonic H), i.e.,

$$\mu_{\mathbf{j}}^{\mathrm{H}} = 10\log\left\{(1/\mathrm{N})\sum_{\mathbf{i}\in\mathbf{j}}^{\mathbf{N}}10^{\mathrm{SPL}_{\mathbf{i}}^{\mathrm{H}}/10}\right\}$$

and also let

sj=space average (swept) level measurement made in Subvolume j (harmonic H)

The available measurements are then as given below

Microphone Locations and Usage

Subvolume, j	Run Nos.	Microphone	s, i
		Head (ear)	Swept
1	2,8,10,11,12	2,3	-
2	2,8	4,5	-
2	10,11,12	. 4	5
3	2,8	6	-
3	10,11,12	•	6

Table 16 summarizes all of the pertinent interior flight measurements. Figure 44 shows one of the interior spectrum of the type from which the data in the table were taken. The table contains the measurements and also the calculated mean head (ear) levels where such a calculation is meaningful. that the highest levels in the aircraft occur in Subvolume 1 (which the propeller plane passes through) and thus the spaceaverage interior level in the cabin will be dominated by the space-average level in the forward-most subvolume. Unfortunately, there is no direct way of determining a relationship between the measured (average) head (or ear) level and the space-average level so the latter must be estimated. Also note that there is a considerable decrease in sound levels from the forward to the aft subvolume. This makes an accurate estimation of the spaceaverage level in the forward subvolume even more critical.

5.2.2 Space-Average Levels

The mean difference can be calculated between the mean head levels in Subvolumes 1 and 2 for Runs 2 and 8, i.e.,

$$<\mu_1^{\rm H}-\mu_2^{\rm H}>_{2\&8}$$
 •

For Runs 10, 11, and 12, there can also be calculated the mean difference

$$\langle \mu_1^{\rm H} - s_2^{\rm H} \rangle_{10,11&12}$$

Table 16. Interior Measurements

	//o # **	22.1-4 .2	10 50	\0		***	
Kun 7	72 V = 15	JC Kt, A	Lt.=17,50 Head	l (Ear) I	Cevels		
H	SPL ^H	SPLH	SPLH	SPLH	μ ^H 1	μ ^Η 2	SPL ₆
1	102.2	102.4	95•5	103.8	102.3	101.4	98.4
2	99.0	100.0	98.2	84.8	99•5	95•4	87.5
3	94.2	95.6	80.5	82.0	94.9	81.3	82.0
4	81.5	76.3	67.0	65.8	79.6	66.4	66.7
5	69.0	76.3	69.0	68.2	74.0	68.6	63.0
Run 7	#8 V =2	10 kt, A	Lt.=12,00	00 ft			
			Head	i (Ear) l	Levels		
H	SPLH 2	SPLH	SPLH	SPL ^H	μ ^Η 1	μ ^Η 2	SPL ^H
1	100.6	101.7	96.7	102.0	101.2	100.1	97.0
2	98.4	97.8	96.5	80.5	98.1	93.6	84.5
3	90.6	95•5	76.7	78.1	93•7	77•5	79.8
4	66.6	71.0	66.0	66.2	69.3	66.1	65.0
5	72.0	75.0	64.0	69•5	73.8	67•5	66.7
Run j	#10 V =	238 kt,	Alt.=5,00	00 ft			
	1	Head (Ea	r) Levels	5	Sw	ept	
H	SPL ^H	SPL ^H	μ ^H 1	SPLH	s2=SPL7	sH=SP	L ₈
1	104.4	102.5	103.6	95.8	102.0	99	•5
2	98.8	103.2	101.5	98.8	90.2	82	•0
3	92.5	99•7	94•5	82.6	80.8	78	.8
4	80.2	82.0	81.2	72.0	73.2	68	.1

5 72.2 76.7 75.0 63.0

70.7

67.3

Table 16. Interior Measurements (Continued)

Run #11 V =216 kt, Alt.=5,000 ft

	I	Head (Ear) Level:	5	Swept			
H	SPL ^H	SPLH 3	μ_1^{H}	SPLH	sH=SPLH	s3=SPLH		
1	101.7	102.0	101.9	96.7	97.6	97•7		
2	96.6	99.0	98.0	94.4	88.8	79•5		
3	90.5	96.2	94.2	80.8	79,2	75.1		
4	70.5	77.0	74•9	71.4	71.7	64.5		
5	72.7	77.2	75.5	59.0	67.8	64.0		

Run #12 V =165 kt, Alt.=5,000 ft

	1	Head (Ear) Level:	5	Swe	pt
·H	SPL ^H	SPL ^H	μ ^H 1	SPLH	sH=SPLH	s3=SPLH
1	97.8	95.6	96.8	92.7	93.8	96.2
2	94.2	91.7	93.1	92.3	87.0	76.1
3	89.4	91.4	90.5	75•4	75.2	67.9
4	73•5	76.8	75.5	69•5	67.0	60.5
5	68.8	72.0	70.7	58.0	63.2	60.0

OF POOR QUALITY

where s_2^H is the space average level in Subvolume 2 (swept measurement with microphone 5). Table 17 shows the results of the calculations. There are a number of different things to be noted. First, all runs are for the same propeller speed (Table 15). From a frequency selection standpoint, this means that the propeller harmonics will sample the cabin modes in the same However the exterior fields will be different from run to run thus from a spatial coupling standpoint, the sampling of interior modes will not be the same. Nevertheless, there is a certain consistency in the data, i.e., between the differences in head (ear) levels and the differences in head and space average levels for the two subvolumes. For instance, the third harmonics show the largest differences. On the average there are similar magnitudes of differences for all of the harmonics except for the fourth (and possibly the second). There is not much scatter except in the case of the fourth harmonics.

A standard hypothesis test is performed on the data on a harmonic-by-harmonic basis. Let μ_{δ}^{H} be the true mean difference (mean over Runs R and N) of the difference of the means in Subvolumes 1 and 2, i.e., for harmonic H:

$$\mu_{\delta}^{H} = (1/N \cdot R) \sum_{r=n}^{R} \delta_{nr}^{H} = \langle \delta_{nr}^{H} \rangle_{N+R}$$

where

$$\delta_{nr}^{H} = (\mu_{1}^{H} - \mu_{2}^{H})_{n} - (\mu_{1}^{H} - s_{2}^{H})_{r}$$

and n is one from a large sample of runs (of total number N) where μ_2^H are the available measures of average sound pressure levels in Subvolume 2, and r is similarly from a large sample R where s_2^H are the available measures of average sound pressure levels in Subvolume 2. The hypothesis is that μ_δ^H is zero, i.e.,

$$H_o: \mu_{\delta}^{H} = 0.$$

Table 17. Differences Between Average Sound Levels in Forward and Middle Subvolumes

	μ_1^{H}	-μ ^H ₂		$<\mu_{1}^{H}-\mu_{2}^{H}>_{2\&8}$
H 1 2 3 4 5	Run 2 0.9 4.1 13.6 13.2 5.4	Run 8 1.1 4.5 16.2 3.2 6.3		1.0 4.3 14.9 8.2 5.9
		μ ^H ₁ -s ^H ₂	_	<\mu_1^H-s_2^H>_10,11,&12
H 1 2 3 4 5	Run 10 1.6 11.3 13.7 8.0 4.3	Run 11 4•3 9•2 15•0 3•2 7•7	Run 12 3.0 6.1 15.3 8.5 7.5	3.0 8.9 14.7 6.6 6.5

The estimator for μ_{δ}^{H} is

$$\bar{\delta}^{H} = (1/2.3) \left\{ \sum_{n=2\&8} \sum_{r=10.11\&12} \delta_{nr}^{H} \right\}$$

=
$$(1/6)(\delta_{2,10}^{H}+\delta_{2,11}^{H}+\delta_{2,12}^{H}+\delta_{8,10}^{H}+\delta_{8,11}^{H}+\delta_{8,12}^{H})$$
,

with sample standard deviation

$$s_{\delta}^{H} = \left\{ (1/5) \cdot \sum_{n=2\&8} \sum_{r=10,11\&12} (\delta_{nr}^{H} - \overline{\delta}^{H})^{2} \right\}^{\frac{1}{2}}$$

The acceptance region for the hypothesis at the lpha level of significance is given by

$$|\bar{\boldsymbol{\delta}}^{H}| \leqslant s_{\bar{\boldsymbol{\delta}}}^{H} t_{5;\alpha/2} / \sqrt{6}$$
,

where $t_{5;\alpha/2}$ is the Student t-distribution with n=5 degrees of freedom. The results are given in Table 18.

Table 18. Results of Hypothesis Tests

Hypothesis Test for-	Sam; Stati:		Level		
Harmonic	$\delta^{\mathrm{H}}(\mathrm{dB})$		of Significance <u>α</u>	Acceptance Region (-dB)	Accept?
1	-1.96	1.21	0.2	0.73	no
2	-4.57	2.35	0.2	1.42	no
3	0.23	1.61	0.2	0.97	yes
4	1.63	6.07	0.2	3.65	yes
5	-0.65	1.78	0.2	1.07	yes

Bias is indicated for harmonics 1 and 2, where the hypothesis is rejected. For the higher harmonics there is no proven bias.

Let $\bar{\mu}_{\delta}^1 = \mu_{\delta}^1 + 2$ and $\bar{\mu}_{\delta}^2 = \mu_{\delta}^2 + 4.5$. A new hypothesis test (for the first two harmonics) of the form

$$H_o: \overline{\mu}_{\delta}^H = 0$$
 ,

does not indicate bias.

The space-average interior levels are calculated using the following interpretation of the results above and other assumptions:

1) Implications are that on the average, for Runs 10, 11, and 12:

$$s_{2}^{1} = \mu_{2}^{1} - 2dB$$
 $s_{2}^{2} = \mu_{2}^{2} - 4.5dB$
 $s_{2}^{2} = \mu_{2}^{2}$
 $s_{2}^{3} = \mu_{2}^{3}$

2) The relationships assumed above between the average head (ear) levels and space-average levels in Sub-volume 2 are reasonable for use in Subvolume 1 as well, i.e.,

$$s_{1}^{1} = \mu_{1}^{1} - 2dB$$

$$s_{1}^{2} = \mu_{1}^{2} - 4.5dB$$

$$s_{1}^{3} = \mu_{1}^{3}$$

$$s_{1}^{5} = \mu_{1}^{5}$$

3) The space-average levels in the cabin (for Runs 10, 11, and 12) can be estimated using the swept microphone data taken in Subvolumes 2 and 3 and the

average head (ear) level data from Subvolume 1 corrected for bias according to 2) above.

Note that the sample standard deviation in Table 18 lies in the narrow range between 1.2 and 2.4 dB for four of the five harmonics, but it is about 6 dB for the fourth harmonic. Although no bias adjustment is warranted for that harmonic, there is a high probability (1 chance out of 3) that the predicted space average in Subvolume 1 will be off by more than 6 dB, even if all of the assumptions above are accurate.

The space-average levels are computed from the measurement data with the following relations, where s_j^H is the space average sound pressure level in Subvolume j:

$$\begin{aligned} \mathbf{x}_{\mathbf{j}}^{H} &= 10^{\mathbf{S}_{\mathbf{j}}^{H}/10} \quad , \\ \mathbf{\bar{x}}_{\mathbf{H}} &= (1/N) \sum_{\mathbf{j}=1}^{N} \mathbf{x}_{\mathbf{j}}^{H} \quad ; \quad N=3 \text{ subvolumes} \quad , \\ \mathbf{s}_{\mathbf{H}} &= \left\{ (1/m) \sum_{\mathbf{j}=1}^{N} (\mathbf{x}_{\mathbf{j}}^{H} - \overline{\mathbf{x}}_{\mathbf{H}})^{2} \right\}_{\mathbf{m}=N-1}^{\frac{1}{2}} . \end{aligned}$$

Space-Average Level (Harmonic H)

(1-a) % Confidence Limits (on the space average)

$$SPL_{H}^{1-\alpha} = 10log(\overline{x}_{H} + s_{H}t_{N-1}; \alpha/2/\sqrt{N})$$

The calculated space-averages and the 95% and 99% confidence limits are given in Table 19.

Table 19. Measured Space Averages and Confidence Limits

Ru	n No.	10						
H	μ_1^{H}	Bias Correction	s ^H	s ^H 2	s ^H 3	$\overline{\mathtt{SPL}}_{\mathtt{H}}$	SPLH 55 *	SPLH99*
1	103.6	-2	101.6	102.0	99•5	101.2	96.1-103.5	<105.3
2	101.5	-4.5	97.0	90.2	82.0	93.2	<99•3	<102.3
3	94.5	0	94.5	80.8	78.8	90.0	<96.9	<100.0
4	81.2	0	81.2	73.2	68.1	77.2	<83 . 5	<86.4
5	75.0	0	75.2	70.7	67.3	72.2	<77.2	<80.0
Ru	n No. 1	<u> </u>						
H	μ_1^{H}	Bias Correction	s ^H	s ^H 2	s ^H 3	SPLH	$\mathtt{SPL}^{95}_{\mathtt{H}}$	SPLH99
1	101.9	-2	99•9	97.6	97•7	98.5	91.7-101.1	<103.1
2	98.0	-4.5	93•5	88.8	79•5	90.1	<95.8	<98.6
3	94•2	0	94.2	79.2	75.1	89.6	<96.6	<99.8
4	74•9	0	74.9	71.7	64.5	72.1	<77.1	<79.9
5	75•5	0	75•5	67.8	64.0	71.7	<77.8	<80.7
Ru	n No. 1	12						·
H	μ_1^{H}	Bias Correction	s ^H ₁	s ^H 2	s ^H 3	$\overline{\mathtt{SPL}}_\mathtt{H}$	SPL _H 95	SPL ⁹⁹
1	96.8	- 2	94.8	93.8	96.2	95.0	89.8-97.3	<99.2
2	93.1	-4.5	88.6	87.0	76.1	86.3	<91.5	< 94.4
3	90.5	0	90.5	75.2	67.9	85.9	<92.9	<96.0
4	75.5	0	75•5	67.0	60.5	71.4	<77•9	<80.9
5	70.7	0	70.7	63.0	60.0	66.9	<72.9	<75.9

^{*}Only the upper limit is defined for those cases with the "less than (<)" symbol

5.3 Computer Simulation of Flight Tests

As discussed in Section 4, the exterior field predictions made with the ANOPP program need to be examined to determine whether the PAIN grid is properly located and also to see if the pressure field decreases sufficiently over the length of the grid. For the present aircraft, a preliminary selection of the grid centering variable (i.e., centering relative to the maximum predicted sound pressure level on the exterior of the fuselage) is $k_p=8$. Figure 36 illustrates the selection.

5.3.1 ANOPP Prediction Methodology

The ANOPP program can predict propeller tones using various methods and the degree of complexity of the calculations will impact the user. Two methods of concern that can be used to predict the free field propeller noise in-flight are the so-called Method 1 or full blade formulation in which only 40 of the pressure signatures (out of 160 required) can be computed at any one time, and the Method 3 or compact chord approximation (line source model) in which all 160 signatures can be computed simultaneously.

Run No. 2 was selected for comparing the full blade and compact chord models, with the hope being to use the simpler Method 3 on the three flight comparison runs 10, 11, and 12. Figures 45 and 46 illustrate the differences in the results of the calculations. Figure 45 gives the sound pressure levels predicted along the line ℓ =1 (Figure 3) that were computed using both methods (the Method 1 or full blade prediction is considered the most accurate prediction possible). It is seen that the amplitudes forward of and also near to the propeller plane compare quite well for all harmonics. The full blade predictions exceed the line source predictions aft of the propeller plane, usually by 2 to 5 dB after each has rolled off about 10 dB below the peak

FIGURE 45. AMPLITUDE COMPARISON, FULL BLADE VS. COMPACT CHORD FORMULATIONS

levels. Certainly in the case examined most of the acoustic energy incident on the fuselage is within the grid area. The levels of the first harmonic decrease more than 12 dB from k=7 to the extremes of the grid and much larger roll-offs are predicted for the higher harmonics. The ANOPP predicted roll-off of the over-all sound level is quite consistent with the empirical prediction made using Figure 39 as discussed in Section 4.1.

Figure 46 shows the phase calculations ($\ell=1$) for the various harmonics as predicted by ANOPP using the two methods. appears to be very little similarity. But the PAIN program is concerned not with phase point-by-point on the grid, but with phase difference point-to-point. Phase differences can be compared by adjusting the phase predictions to their respective means and then by overlaying them as done in Figure 47. where it is observed that the phase information compares quite well. On the basis of these comparisons, it was decided that the ANOPP Method 3 was sufficiently accurate. Later to verify the correctness of this decision, the Run 2 propeller noise predictions (both methods) were used as an input to the PAIN program and the interior levels predicted in the Merlin IVC aircraft were compared. This was done for blade downsweep only. The differences in predicted interior levels were such that the full blade model resulted in very slightly higher interior levels. The results for the first harmonics differed by 1.05 dB; for the second: 1.46 dB; the third: 0.05 dB; the fourth: 2.04 dB; the fifth: 1.84 dB.

5.3.2 Predicted Exterior Levels

Tables 20, 21, and 22 give the ANOPP predicted free field flight levels along the grid line $\ell=1$. The data are also given in Figures 48-53. It should be recalled that the free field amplitudes are increased according to Eq. (43) of Ref-

FIGURE 47. PHASE COMPARISON WHEN ADJUSTED TO MEANS $\vec{\theta}_H$

Table 20. Exterior Levels in Flight Run No. 10 (ANOPP Compact Chord, free field, ℓ =1)

Harmonic	S	ound Pr	essure	Level,	dB re 2	20 µPa		
H	k=1	2	3	4	5	6	7	88
1	122.4	125.4	128.4	131.4	134.1	136.1	136.3	133.5
2	107.4	112.3	117.3	122.3	127.1	131.2	133.0	129.2
3	92.2	98.8	105.7	112.7	119.6	125.8	129.3	125.3
4	77.0	85.2	93.9	102.9	112.0	120.2	125.5	121.7
5	61.7	71.7	82.1	93.0	104.1	114.5	121.6	118.4
		Pł	ase, ϕ	H (degre	ees)			
1	-91.7	-102.1	-111.9	-120.9	-129.0	-135-1	-134-3	-103.7
2	-52.3	-72.6	-91.2	-108.2	-124-9	-137-7	-146.7	-132.2
3	-11.7	-42.2	-69.3	-94.5	-117.3	-138.3	-155.7	-156.4
4	29.9	-11.0	-47.2	-79.7	-109.5	-137-4	-162.7	-177-4
5	71.9	20.9	-24.0	-64.1	-101.0	-135.6	-168.3	164.2
Harmonic		Sound Pr	essure	Level,	dB re 2	20 µPa		
Ħ			11	12	13	14	15	16
	k= 9	10		· _				
1	k=9 133•4	132.3	130.0		124.7	122.1	119.5	117.0
				127.4				117.0 97.2
1	133.4	132.3 122.9	130.0 118.7	127•4 114•1	109.6	105.2	101.1	
1 2	133.4 125.9	132.3 122.9 113.2	130.0 118.7 106.9	127.4 114.1 100.5	109 . 6 94 . 3	105 . 2 88 . 6	101 . 1 83 . 1	97•2 77•8
1 2 3	133.4 125.9 118.2	132.3 122.9 113.2	130.0 118.7 106.9	127.4 114.1 100.5 86.5	109 . 6 94 . 3	105.2 88.6 71.9	101.1 83.1 65.2	97•2 77•8
1 2 3 4	133.4 125.9 118.2 110.4	132.3 122.9 113.2 102.9 91.3	130.0 118.7 106.9 94.7 81.3	127.4 114.1 100.5 86.5	109.6 94.3 79.0 63.3	105.2 88.6 71.9	101.1 83.1 65.2	97•2 77•8 58•6
1 2 3 4	133.4 125.9 118.2 110.4 102.8	132.3 122.9 113.2 102.9 91.3	130.0 118.7 106.9 94.7 81.3	127.4 114.1 100.5 86.5 71.8	109.6 94.3 79.0 63.3 ees)	105.2 88.6 71.9 55.3	101.1 83.1 65.2 47.4	97•2 77•8 58•6
1 2 3 4 5	133.4 125.9 118.2 110.4 102.8	132.3 122.9 113.2 102.9 91.3 P1	130.0 118.7 106.9 94.7 81.3 nase, ϕ_1	127.4 114.1 100.5 86.5 71.8 (degree	109.6 94.3 79.0 63.3 ees)	105.2 88.6 71.9 55.3	101.1 83.1 65.2 47.4	97•2 77•8 58•6 39•5
1 2 3 4 5	133.4 125.9 118.2 110.4 102.8	132.3 122.9 113.2 102.9 91.3 P1 -67.0 -96.1	130.0 118.7 106.9 94.7 81.3 nase, ϕ_1 -70.4 -105.9	127.4 114.1 100.5 86.5 71.8 (degree -75.6 -117.8	109.6 94.3 79.0 63.3 ees) -80.9 -129.2	105.2 88.6 71.9 55.3 -85.8 -138.0	101.1 83.1 65.2 47.4 -90.0 -146.4	97.2 77.8 58.6 39.5
1 2 3 4 5	133.4 125.9 118.2 110.4 102.8 -70.7 -97.2 -123.8	132.3 122.9 113.2 102.9 91.3 P1 -67.0 -96.1 -123.7	130.0 118.7 106.9 94.7 81.3 nase, ϕ_1 -70.4 -105.9 -140.0	127.4 114.1 100.5 86.5 71.8 (degree -75.6 -117.8 -159.6	109.6 94.3 79.0 63.3 ees) -80.9 -129.2 -177.9	105.2 88.6 71.9 55.3 -85.8 -138.0 167.5	101.1 83.1 65.2 47.4 -90.0 -146.4 157.2	97.2 77.8 58.6 39.5 -93.2 -151.3

FIGURE 48. EXTERIOR LEVELS (FREE FIELD), FLIGHT RUN NO. 10
-143-

Table 21. Exterior Levels in Flight Run No. 11 (ANOPP Compact Chord, free field, $\ell=1$)

Harmonio		Sound Pr	ressure	Level,	dB re 2	20 µPa		
H	k=1	2	3	4	5	6	7	8
1	121.0	124.0	127.0	129.9	132.6	134.6	134.7	131.5
2	105.9	110.8	115.8	120.8	125.6	129.6	131.4	127.4
3	90.5	97.1	104.0	111.1	118.1	124.2	127.7	123.7
4	75.1	83.4	92.1	101.2	110.3	118.6	123.9	120.3
5	59•7	69.6	80.1	91.2	102.4	112.8	119.9	117.1
		Pl	nase, φ	H (degre	ees)			
1	-100.7	-110.1	-118.8	-126.9	-134.0	-139-3	-138.2	-107-4
2	-67.8	-85.9	-102-4	-117-5	-131.3	-143-5	-151.4	-137.8
3	-33.8	-60.8	-85.0	-106.9	-127.0	-145.5	-161.0	-162.8
4	1.3	-34.9	-66.8	-95.3	-121.5	-146.1	-168.6	176.3
5	36.8	-8.1	-47.7	-82.9	-115.2	-145.7	-174-9	158.3
Harmoni	:	Sound Pr	ressure	Level,	dB re a	20 µPa		
H	k=9	10	11	12	13	14	15	16
1	131.3	130.4	128.2	125.6	122.9	120.2	117.6	115.6
2	123.5	120.6	116.4	111.8	107.3	102.9	98.8	94.9
3	115•4	110.3	104.1	97.6	91.5	85.7	80.3	75.1
4			, • .	,,	7.47	U		
_	107.4	99.0						55•4
5	107.4	99•0 85•3					61.9	
5		85.3	90.9	82 . 7	75•3 58•6	68.4	61.9	55•4
1	100.8	85.3 P1	90.9 75.4 nase, ø	82.7 66.3	75•3 58•6 ees)	68.4 51.1	61.9 43.6	55•4
	100.8 -70.1	85.3 P1	90.9 75.4 nase, p	82.7 66.3 H (degree -71.6	75•3 58•6 ees) -76•5	68.4. 51.1	61.9 43.6 -84.9	55•4 36•0
1	-70.1 -97.7	85.3 P1 -64.5 -92.7	90.9 75.4 nase, ϕ -67.1 -100.6	82.7 66.3 H (degree -71.6 -111.4	75.3 58.6 ees) -76.5 -122.1	68.4. 51.1 -81.0 -131.4	61.9 43.6 -84.9 -138.5	55•4 36•0 -87•9
1 2	-70.1 -97.7 -127.0	85.3 P1 -64.5 -92.7 -119.5	90.9 75.4 nase, ϕ -67.1 -100.6 -132.8	82.7 66.3 H (degree -71.6 -111.4 -150.9	75.3 58.6 ees) -76.5 -122.1 -168.4	-81.0 -131.4 177.2	61.9 43.6 -84.9 -138.5 167.3	55.4 36.0 -87.9 -143.2

FIGURE 50. EXTERIOR LEVELS (FREE FIELD), FLIGHT RUN NO. 11

70

FIGURE 51. PHASE (FREE FIELD), FLIGHT RUN NO. 11

Table 22. Exterior Levels in Flight Run No. 12 (ANOPP Compact Chord, free field, ℓ =1)

Harmonio	,s	Sound Pr	ressure	Level,	dB re 2	20 μPa		
H	k=1	2	3	4	5	6	7	8
1	118.2	121.1	124.1	126.9	129.5	131.3	131.3	127.3
2	102.7	107.6	112.6	117.6	122.3	126.3	128.1	123.8
3	87.0	93.6	100.6	107.7	114.6	120.8	124.4	120.8
4	71.1	79.5	88.4	97.6	106.7	115.0	120.5	118.0
5	55.2	65.3	76.1	87.4	98.7	109.2	116.6	115.1
		Pl	nase, ϕ	H (degr	ees)			
1	-120.7	-127.8	-134-3	-140.2	-145.4	-148.9	-147.2	-118.5
2	-101.3	-114.9	-127.1	-138.2	-148.2	-156.9	-162.6	-153.6
3	-80.8	-100.9	-118.6	-134-5	-148.9	-162.2	-173.8	-178.9
4	-59.2	-86.0	-109.1	-129.5	-148.3	-165.9	177.3	161.6
5	-36.7	-70.3	-98.9	-123.8	-146.8	-168.6	169.8	145.6
Harmoni		Sound Pr	ressure	Level,	dB re	20 µPa		
Harmonio	k=9	Sound Pr	ressure 11	Level,	dB re 7	20 μPa 14	15	16
	·		11	12	13	14		16
H	k=9	10	11	121.6	1 <u>3</u>	14 116.2	113.6	
<u>H</u>	k=9 126.5	10 126.0	11 124•1 110•9	12 121.6 106.3	13 118.9 101.8	14 116.2 97.4	113.6 93.4	111.1
H 1 2	k=9 126.5 117.4	10 126.0 114.8 102.1	11 124.1 110.9	12 121.6 106.3 89.8	13 118.9 101.8 83.8	14 116.2 97.4 78.3	113.6 93.4 73.2	111.1
H 1 2 3	k=9 126.5 117.4 109.1	10 126.0 114.8 102.1	11 124.1 110.9 96.2	12 121.6 106.3 89.8 70.3	13 118.9 101.8 83.8 64.9	14 116.2 97.4 78.3 59.5	113.6 93.4 73.2 53.8	111.1 89.5 68.4
H 1 2 3 4	k=9 126.5 117.4 109.1 104.4	10 126.0 114.8 102.1 87.8 86.1	11 124.1 110.9 96.2 77.1 72.6	12 121.6 106.3 89.8 70.3	13 118.9 101.8 83.8 64.9 52.4	14 116.2 97.4 78.3 59.5	113.6 93.4 73.2 53.8	111.1 89.5 68.4 48.0
H 1 2 3 4 5	k=9 126.5 117.4 109.1 104.4 102.0	10 126.0 114.8 102.1 87.8 86.1	11 124.1 110.9 96.2 77.1 72.6 hase ϕ	12 121.6 106.3 89.8 70.3 61.6	13 118.9 101.8 83.8 64.9 52.4 ees)	14 116.2 97.4 78.3 59.5 44.3	113.6 93.4 73.2 53.8 36.7	111.1 89.5 68.4 48.0
H 1 2 3 4 5 5 1	k=9 126.5 117.4 109.1 104.4 102.0	10 126.0 114.8 102.1 87.8 86.1	11 124.1 110.9 96.2 77.1 72.6 hase \$\phi\$	12 121.6 106.3 89.8 70.3 61.6 (degr	13 118.9 101.8 83.8 64.9 52.4 ees)	14 116.2 97.4 78.3 59.5 44.3	113.6 93.4 73.2 53.8 36.7	111.1 89.5 68.4 48.0 29.2
H 2 3 4 5 5 1 2	k=9 126.5 117.4 109.1 104.4 102.0 -70.5 -105.6	10 126.0 114.8 102.1 87.8 86.1 P1 -60.3 -88.0	11 124.1 110.9 96.2 77.1 72.6 hase \$\phi\$	12 121.6 106.3 89.8 70.3 61.6 (degr	13 118.9 101.8 83.8 64.9 52.4 ees) -67.4 -108.0	14 116.2 97.4 78.3 59.5 44.3	113.6 93.4 73.2 53.8 36.7 -74.2 -122.7	111.1 89.5 68.4 48.0 29.2
H 1 2 3 4 5	k=9 126.5 117.4 109.1 104.4 102.0 -70.5 -105.6 -153.4	10 126.0 114.8 102.1 87.8 86.1 P1 -60.3 -88.0 -120.8	11 124.1 110.9 96.2 77.1 72.6 hase \$\phi\$ -60.6 -90.9 -123.2	12 121.6 106.3 89.8 70.3 61.6 H (degrided) -63.7 -98.9 -137.5	13 118.9 101.8 83.8 64.9 52.4 ees) -67.4 -108.0 -153.9	14 116.2 97.4 78.3 59.5 44.3 -71.0 -116.3 -167.6	113.6 93.4 73.2 53.8 36.7 -74.2 -122.7 -176.4	111.1 89.5 68.4 48.0 29.2 -76.7 -126.7

ORIGINAL PACE IS. OF POOR QUALITY

FIGURE 52. EXTERIOR LEVELS (FREE FIELD), FLIGHT RUN NO. 12

FIGURE 53. PHASE (FREE FIELD), FLIGHT RUN NO. 12

erence 1 to account for the blocking by the fuselage surface. For consistency with the scale model test results, a maximum increase of 4 dB is allowed, i.e., the right hand side of Eq. (43) is multiplied by a factor 0.8.

The scale-model tests showed that the reflection effects dissipate faster than the PAIN model predicts, so the computer generated field may be "stronger" than the actual field. No changes are proposed in propeller data input, however, until ANOPP calculated blocked pressures are available.

5.3.3 Fuselage and Cabin Modeling

The fuselage modeling is exactly as detailed in Section 4.2.2. The structural modal file (identical to that in Appendix C) is created using the input data specified for the business aircraft as given in Table 13.

The cabin modeling is also basically identical. The floor angle is taken as 50° . The acoustic modal file such as shown in Appendix C (that output by PAIN) is created once the cabin length is specified. Results given in Appendix C were for a cabin length of 7.75 m. In the present case, the length is 7.89 m. Also the trim panel surface mass is different (1.95 kg/m² as noted in Section 5.1).

Both of the input files (to PAIN) are complete, or sufficiently complete to allow use of the low frequency calculation procedure for all 5 harmonics.

5.3.4 PAIN Input and Output Data

Input data for the PAIN program consist of the output files from MRPMOD and CYL2D plus its own exclusive data. These data are the same type as was used for PAIN input in the scale model tests. Table 6 should be consulted to review the requirements.

Damping

The structural loss factors of the bare (or untrimmed) fuselage are taken as $2/f_r$ where f_r is the resonance frequency. PAIN will calculate trimmed fuselage "loss factors" necessary for the transmission predictions, i.e., $\eta_r^{\, \prime}$ and $\eta_r^{\prime\prime}$.

The acoustic loss factors are input as zero so that PAIN will calculate the sidewall conductance and then the loss factors.

The trim panel loss factor η_{π} is set to 2.0 to force PAIN to calculate (what is believed to be) the most accurate transmission coefficient. Figure 54 shows the effects of changing $\eta_{ au extstyle \bullet}$. The predicted interior levels will not be affected nearly as much as these curves might imply because a resonance controlled trim will also more readily absorb sound from the cabin space. For instance in Run 10, reducing $\eta_{\tau\tau}$ from 2.0 to 0.2 increases the predicted space average level by only 2.75 dB for the first harmonic (104.5 Hz). It actually decreases it by 0.48 dB for the second harmonic (209.1 Hz) and increases it by only 1.95 dB for the third harmonic (313.6 Hz). An increase of 4.58 dB is predicted for the fourth harmonic (418.1 Hz) and 3.73 dB for the fifth harmonic (522.7 Hz). The above differences (quoted for blade downsweep) show that the trim effects are not simply describable in terms of a transmission coefficient (or transmission loss), but only within the context of the PAIN analytical model. Until future superior developments replace the present trim model, it is recommended that η_m be arbitrarily set at 2 to create a trim model valid in the frequency range from about 50 to perhaps 1000 Hz. Reference 6 may be consulted for review of the trim model.

FIGURE 54. EFFECT OF VARYING LOSS FACTOR, $\eta_{\rm T}$ ON TRIM FACTOR $\tau_{\rm t}$ = $|{\rm C}^{\rm W}|^2$

Propeller

The propeller is located as before by the variables r_p , z_p , and ϕ (Figure 36). As can be seen in the figure r_p is 2.35 m, z_p is 1.12 m, and ϕ is 75° (recall that the PAIN input requirement for ϕ is to the nearest 5° increment). In the present case, the number of blades B is 4 and the propeller rotation speed N is 1568 rpm. The blade sweep variable is +1 (downsweep) or -1 (upsweep). PAIN must be run twice since there are two propellers rotating in the same direction and the interior levels predicted for blade downsweep and upsweep must be added (on a power basis) to obtain the predicted levels in-flight.

Pressurization

The effects of pressurization are accounted for (in PAIN) through adjustment of the exterior and interior air densities and sound speeds. The flight status is determined by the exterior and cabin temperatures and the cabin pressure. correct exterior sound speed is 341.6 m/s. This is based on on temperature of 17°C (Table 15) which is higher than the standard at 5000 ft. The ANOPP exterior sound speed was taken as 334.1 m/s which is nearer that of standard temperature. This was an error in the ANOPP input, but a difference of only slightly over 2% less than the true sound speed is not significant. The PAIN input duplicates the ANOPP input of 334.1 m/s with an exterior density of 1.1012 kg/m². interior sound speed is 343 m/s with a density of 1.204 kg/m². This latter value is based on an ICAO standard pressure altitude (12.243 psia at 5000 ft plus a 2.5 psi differential) and 68°F in the cabin. Had comparisons been attempted at higher altitudes, greater care would have had to have been taken in duplicating flight exterior conditions. However here the errors incurred in predicting exterior prop noise are not considered to be sufficiently great to force a re-run of ANOPP for the three runs 10, 11 and 12. Estimates are that much less than a one decibel change in exterior levels would result if re-run.

Input and Output Data

Formatted input data for Programs MRP, MRPMOD and PAIN are given in Appendix D (Run 10 only). Also given in the same Appendix are the propeller blocked field data output by PAIN (Run 10) and the interior predictions for that run. In the interest of brevity, similar input and output data for Runs 11 and 12 are not shown.

5.4 Comparisons to Flight Test Results

The fundamental flight test comparisons are summarized in Tables 23 and 24 and in Figures 55, 56 and 57. The following is a brief description of the findings:

- 1) Predictions for four of the five harmonics fall within the 99% confidence limits of the measurements (for all three runs (10, 11 and 12)).
- 2) Predictions for 4 out of 5 harmonics also fall within the narrower 95% confidence limits for Run 10, and in Runs 11 and 12, 3 out of 5 predictions fall within the 95% confidence limits and predictions for the 2nd harmonics fall outside by 1.3 and 1.4 dB respectively.
- 3) In each run, the prediction for the fourth harmonic yields the major discrepancy.
- 4) The sample mean error between predicted (downsweep plus upsweep) and the measured space average level is +4.3 dB across all harmonics and runs (15 datum; predictions exceeding measurements) with a standard

Table 23. Predicted Versus Measured Space Average Sound Pressure Levels in Flight

		·		<u> SPL</u> H (dB)	(dB)	·	Prediction-
Run No.	Harmonic H	Fred. (Hz)		Predicted		N.S.	A 1
. !			Downsweep	Uрsweep	Both	Measurea	
10	-	104.5	6•66	6•66	102.9	101.2 (102.0)	1.7 (0.9)
	2	209.1	9•96	95.5	99.1	93.2 (97.1)	5.9 (2.0)
	8	313.6	88.1	4.68	91.8	6•68	1.9
	4	418.1	83.9	83.5	86.7	77.2	9.5
	5	522.7	71.0	69•2	73.2	72.2	1.0
	-	104.5	6.76	97.8	100.9	(9.66) 5.86	2.4 (1.3)
	2	209.1	9•46	93.5	97.1	90.1 (93.8)	7.0 (3.3)
	8	313.6	9*98	87.8	90.3	9•68	2.0
	4	418.1	82.2	81.8	85.0	72.1	12.9
	5	522.7	69•3	9*29	71.5	71.7	-0.2
12		104.5	93.4	93.3	4.96	95.0 (95.8)	1.4 (0.6)
	2	209.1	4. 06	89.4	95.9	86.3 (89.3)	(9*6) 9*9
	~	313.6	83.9	84.7	87.3	85.9	1.4
	4	418.1	78.9	78•6	81.8	71.4	10.4
	5	522.7	66.1	64.7	68.5	6•99	1.6

Table 24. Sample Statistics and Acceptance Regions for Interior Sound Levels (Table 23)

Hypothesis Test on	Samp Statis $\overline{\underline{\Lambda}}(dB)$	stics	Level of Significance a	Acceptance Region (<u>+</u> dB)	Accept?
All 15 datum (3 runs x 5 harmonics)	4•28	4.12	0.2 0.05	1.43 2.28	no .
12 datum (H=4 excluded)	2.62	2.43	0.2 0.05	0.96 1.54	no no
Run #10 (5 harmonics)	4.00	3.62	0.2 0.05	2•48 4•49	no yes
Run #11 (5 harmonics)	4•56	5•42	0.2 0.05	3•71 6•72	no yes
Run #12 (5 harmonics)	4.28	4.08	0.2 0.05	2.80 5.07	no yes
H=1 (10, 11 and 12)	1.83	0.51	0.2 0.05	0.56 1.26	no no
H=2 (10, 11 and 12)	6.5	0.56	0.2 0.05	0.61 1.39	no no
H=3 (10, 11 and 12)	1.33	0.60	0.2 0.05	0.65 1.49	no yes
H=4 (10, 11 and 12)	10.93	1.76	0.2 0.05	1.92 4.37	no no
H=5 (10, 11 and 12)	0.80	0.92	0.2 0.05	1.00 2.28	yes yes

ORIGINAL PAGE 19 OF POOR QUALITY

FIGURE 55. SPACE-AVERAGE SOUND LEVELS INSIDE AIRCRAFT @ 238 KIAS (ALTITUDE=5000ft)

Frequency, Hz

FIGURE 56. SPACE-AVERAGE SOUND LEVELS INSIDE AIRCRAFT @ 216 KIAS (ALTITUDE=5000ft.)

- 159-

FIGURE 57. SPACE-AVERAGE SOUND LEVELS INSIDE AIRCRAFT @ 165KIAS (ALTITUDE=5000ft)

deviation of 4.1 dB (Table 24).

- 5) Excluding the results for the fourth harmonic (i.e., using 12 datum), the mean error is 2.6 dB with a standard deviation of 2.4 dB.
- 6) In both cases 4) and 5) above, a standard hypothesis test clearly (but not surprisingly) shows a bias present in predictions.
- 7) Examined run-by-run, the sample mean errors ranged between 4.0 and 4.6 dB and the sample standard deviations between 3.6 and 5.4 dB. At a sufficiently low level of significance, none of the three runs can be shown to be biased, but actually this is due to the large discrepancies between the predictions and measurements for the fourth harmonics.
- 8) Examined harmonic-by-harmonic, the sample mean errors ranged between 0.8 and 6.5 dB, but ballooned to 10.9 dB for harmonic 4. In all except the case of the third harmonics bias is present. Of great significance how-ever is the low level of random error as exhibited by a standard deviation of less than 1 dB for four of five harmonics and only 1.8 dB for the fourth harmonic.

It should be noted that bias adjustments were previously made to the raw data to obtain estimates for the space average levels in the forward subvolume. Had those adjustments not been made, i.e., if the head level measurements had been taken as representative random samples and the average level taken as the space average in the forward subvolume for the first two harmonics, the errors would have been smaller (see the numbers in the parentheses in Table 23 and also refer to Figure 58). The sample mean error between predictions and measurements across all 15 datum would

FIGURE 58. COMPARISON OF PREDICTIONS AND MEASUREMENTS WITHOUT ASSUMED BIAS CORRECTIONS.

be reduced to 3.4 dB with a standard deviation of 4.1 dB. By excluding the fourth harmonics these become 1.5 dB and 1.1 dB respectively. As before bias is indicated. Now however the mean errors (averaged across the three runs) for the 1st and 2nd harmonics are only 0.9 and 3.0 dB respectively with standard deviations of 0.35 dB and 0.85 dB. What these mean to the eventual user of the PAIN program is a matter to be discussed in the concluding section.

Next consider the accuracy of the predictions made with the "high frequency formulation". As previously stated, these calculations are always output by PAIN. Thus there are comparitive predictions for all harmonics where results from the low frequency technique are available. At sufficiently low frequencies predictions made with the high frequency procedure may be spurious and if so, they should be ignored. Use of the low frequency procedure is preferred whenever possible. However, as noted in Section 4.0, for large fuselages, the high frequency procedure will have to be used above the first few harmonics.

The results for the present flight tests are shown in Table 25. Predictions for the first harmonics are spurious and are discarded. The mean error for the twelve remaining datum (2nd through 5th harmonics) is -1.43 dB with a fairly large standard deviation of 6.26 dB. At the α =0.05 and 0.2 levels of significance, a zero bias hypothesis test yields acceptance regions of $\frac{1}{2}$.97 and $\frac{1}{2}$.46 dB. Since the mean error falls within either of these bounds, the hypothesis is accepted.

Reviewing the results, it can be seen that the low frequency formulation tends to over-predict, while the high frequency formulation does not. Nevertheless the latter predictions are to be considered strictly supplementary in any instance where predictions can be obtained with the low frequency procedure.

Table 25. Predictions with High Frequency Formulation

				SPL _H (dB)		
Run No.	Harmonic H	Freq. (Hz)	Downsweep	Upsweep	Both	Measurement (Table 23)
10	-	104.5	117.6	118.2	(Spurious)	101,2(102,0)
	2	209.1	6*96	98.5	100.7	93.2(97.1)
	23	313.6	84.9	83.7	4.78	89.9
	4	418.1	70.8	4.69	73.2	77.2
	5	522.7	62.6	60.1	64•5	72.2
11	-	104.5	115.5	116.1	(Spurious)	(9.66)5.86
	2	209.1	95.0	9*96	6*86	90.1(93.8)
	к	313.6	83.1	82.1	85.6	9*68
	4	418.1	6889	4.69	71.2	72.1
	5	522.7	61.0	58.7	63.0	71.7
12	-	104.5	111.0	111.5	(Spurious)	95.0(95.8)
	2	209.6	91.1	92.5	6.46	86.3(89.3)
	8	313.6	4.67	78.7	82.1	85.9
	4	418.1	65.3	0.49	67.7	71.4
	5	527.7	57.9	56.1	60•1	6.99

5.5 Understanding Sidewall Transmission

Appendix D contains a copy of the predictions for Run 10 (the case of blade downsweep). There are a number of interesting things about the results that lend to an understanding of the physics involved in the transmission of propeller tones. For instance, the top five contributing modal pairs are all of the following type: 1) either the acoustic and structural modes are both resonance controlled (or nearly so), or 2) a resonant or nearly resonant acoustic mode is coupled to a nonresonant structural mode (exceptions mainly confined to the 1st harmonic). In no case, however, is there a single dominating pair of modes. In fact, the five highest contributing pairs are responsible for only 47.9% of the acoustic energy in the cabin at the 1st harmonic. This value rises to 59.3% and 58.0% for the 2nd and 3rd harmonics, but then falls to only 24.9% and 28.1% for the 4th and 5th harmonics. the propeller tones are being transmitted by a rather large number of modal pairs. The impracticality of the idea of moving modes around in frequency or changing the wavenumber coupling to affect noise reduction is evident. However this "modal insensitivity" is no doubt part of the reason that the predictions are as good as they are. Furthermore, the results make clear that improved sidewall treatment will remain the one particular topic of greatest need if further reductions in cabin levels (arising from sidewall transmission) are to be achieved in these types of airplanes.

6.0 FINDINGS AND CONCLUSIONS

The comparisons in this report have led to a number of findings, the most important of which are reviewed below:

- 1) In the case of the scale-model tests, the PAIN program made unbiased predictions. The standard deviation of the errors was about 4 dB (case of "a heavily damped trim panel" after excluding the extraneous low frequency datum).
- 2) In case of the flight tests, the predictions with the preferred "low frequency formulation" showed a bias (on the high side) of between 2.6 and 4.3 dB and the standard deviation of the errors ranged between 2.4 and 4.1 dB. Predictions made with the "high frequency formulation" showed no bias but had a high random error as exhibited by a standard deviation of 6.3 dB.
- 3) Predictions made for given harmonics at different flight conditions were found to be biased but the level of random error was extremely low as exhibited by the small standard deviations, indicating that changes occurring in interior levels caused by flight reconfiguration are being predicted by the model.

All of the above findings are based on increasing by 4 dB, the ANOPP free-field predictions of the pressure amplitudes to account for fuselage surface reflections (rather than 6 dB as originally programmed in the model). Scale-model blocked pressure measurements imply that surface reflection effects dissipate faster (as one moves away from the propeller plane) than the PAIN model admits. Thus the computer generated blocked pressure field may be "stronger" than it should be. This may be offset somewhat by the use of the so-called ANOPP

method 3 predictions which lead to a "weaker" exterior field than would be predicted using ANOPP Method 1. Ultimately, the blocked pressure predictions by ANOPP are needed to resolve the difficulties, because regardless of the amplitude uncertainties, there are virtually no data available to allow comparisons of phase differences between the free and blocked fields. The PAIN program presently uses the free field phase data (without modification). Future changes in predictions that might be realized when the bona fide blocked field is used are unknown.

6.1 Use of the PAIN Program

PAIN predictions made using ANOPP Method 3 propeller data should be adjusted downward by 3 or 4 dB. The resulting numbers should be considered the basic estimates of the <u>space-average levels</u> in the cabin. Keeping in mind that random errors are going to be present, a one-sigma band of about 3.5 dB about the adjusted computer predictions will then give estimates of levels within which about 2 out of 3 of the flight measurement data should fall. Approximately 1 out of 3 should fall outside the band (hopefully by not much). As time passes and more flight comparison data are made available, this technique may need to be revised.

Calculations made using the high frequency formulation should be carefully scrutinized. Although no bias was indicated by the hypothesis test on the four harmonics 2 through 5, it is pretty obvious from Table 25 that for harmonics 3 through 5, there is a bias (an under-prediction) of more than 4.5 dB. This is probably caused by not including enough modes in the summation in Eq. (16) of Reference 1. Future validation work should confirm this.

6.2 PAIN Validation Status

The propeller tone prediction capability of the PAIN program has

been validated to the extent that, at the conclusion of the present study, no significant changes to the PAIN program have been shown to be warranted. It is felt that the present model is "hamstrung" to a certain extent by the need for ANOPP prediction capability of the actual blocked pressure field on the fuselage. Eventually, given this information, the PAIN program can be modified to include effects such as synchrophasing. In order to perform such calculations, the PAIN grid will need to be extended to cover the entire periphery of the fuselage. The length of the grid should be extended at that time to allow predictions to be made for cases having high tip clearance to propeller diameter ratios. Some consideration should be given to reducing the grid spacing at the same time.

The cabin trim model is simple yet somewhat sophisticated. Stiffness of the trim panel is not taken into account nor are details regarding trim installation included. However, the model has been found to be essentially adequate over the limited frequency range from, say, about 50 to 1000 Hz. Above this range, sound isolation will be over-predicted because skinto-trim vibration transmission will lead to increased internal radiation.

Noise Reduction

The PAIN program has noise reduction prediction capability. However, the quality of the predictions has not been fully investigated. Studies undertaken in Appendix E of Ref. (1) were extremely limited. The poor results shown in that work are, however, expected to be typical for frequencies where the cavity modes are driven in the stiffness controlled region and where the trim transmission is dominated by the mechanical vibration path (see Section 2.8 of Ref. 6 and Eq. A.22 of Ref. 1).

It is felt that the noise reduction calculation option in PAIN should be removed (perhaps made into a separate program) so

that the propeller prediction capability is allowed to stand alone (at least until the extreme limitations on the use of the noise reduction section of the program are clearly defined; for instance, the use of incomplete modal files must be avoided).

REFERENCES

- 1. Pope, L.D., Wilby, E.G. and Wilby, J.F., "Propeller Aircraft Interior Noise Model," NASA CR-3813, 1984.
- 2. Wilby, E.G. and Pope, L.D., "Propeller Aircraft Interior Noise Model, Users' Manual For Computer Program," NASA CR-172425, 1984.
- 3. Pope, L.D. and Wilby, J.F., "Band-limited Power Flow into Enclosures, I," <u>J. Acoust. Soc. Am.</u>, <u>62</u>, 4, 906-911 (1977).
- 4. Pope, L.D. and Wilby, J.F., "Band-limited Power Flow into Enclosures, II," J. Acoust. Soc. Am., 67, 3, 823-826 (1980).
- Fope, L.D., Rennison, D.C., Willis, C.M. and Mayes, W.H., "Development and Validation of Preliminary Analytical Models for Aircraft Noise Prediction," J. Sound and Vib., 82, 4, 541-575 (1982).
- 6. Pope, L.D., Wilby, E.G., Willis, C.M. and Mayes, W.H.,
 "Aircraft Interior Noise Models: Sidewall Trim, Stiffened
 Structures, and Cabin Acoustics with Floor Partition,"
 J. Sound and Vib., 89, 3, 371-417 (1983).
- 7. Martin, R.M. and Farassat, F., "Users' Manual for a Computer Program to Calculate Discrete Frequency Noise of Conventional and Advanced Propellers," NASA TM 83135, 1981.
- 8. Zorumski, W.E., "Aircraft Noise Prediction Program Theoretical Manual," NASA TM 83199, 1981.
- 9. Magliozzi, B., "Acoustic Pressures on a Prop-fan Aircraft Fuselage Surface," J. Aircraft, 19, 2, 104-111 (1980).
- 10. Bendat, J.S. and Piersol, A.G., Random Data: Analysis and Measurement Procedures, Wiley-Interscience, New York, 1971.
- 11. "Prediction Procedure for Near Field and Far Field Propeller Noise," Soc. Auto. Engr. Aerospace Information Report 1407, May 1977.
- 12. Anon., "Prop-fan and Gearbox Near Field Noise Predictions," United Technologies/Hamilton Standard Report SP15A77, Rev. A, February 1978.

Appendix A

- Analytical Modification of PAIN
- . Program Changes
- Control Card Changes

Analytical Modification of PAIN

The basic results of the analyses presented in Refs. (1) and (6) inadvertently lead to errors in the calculation of the fuselage loss factor η_r^i , i.e., application of the results directly to the fuselage of Figure 1, without modification, leads to a calculation of η_r^i for a case where trim is installed not only on the cabin sidewall but also the floor. Also there is a failure to properly take into account the fact that significant modal energy of lower order structural modes can be in axial and circumferential stretching motion of the skin (non-bending).

Consider Fig. 1 of Ref. (6) and refer to Eqs. (1a), (2a), and (3)-(6) of that paper. Note that if trim is not installed over a portion of the surface area (such as the floor), for that portion

$$C_{p} = 1 ; C^{p} = 0.$$
 $C^{w} = 1 ; C_{w} = 0.$

Let X be the set of all points lying on the structure surface covered with trim, and let Q be the entire surface area (all points). Eqs. (1a) and (2a) of the paper can be written as

$$\int_{\overline{X}' \in \Omega} (\delta(\overline{x}' - \overline{x}) + C_{\overline{W}} G(\overline{x}/\overline{x}'; \omega)) w_{1}(\overline{x}') d\overline{x}' = \int_{\overline{X}' \in \Omega} G(\overline{x}/\overline{x}'; \omega) (p^{O}(\overline{x}') - C_{\overline{p}} p_{2}^{i}(\overline{x}')) d\overline{x}'$$
and

(1a)

 $\int_{\overline{\mathbf{X}} \in \Omega} (\mathbf{\tilde{x}} - \overline{\mathbf{x}}') + \rho \omega^2 C^p G_p(\overline{\mathbf{x}}/\overline{\mathbf{x}}'; \omega)) p_2^{\mathbf{1}}(\overline{\mathbf{x}}) d\overline{\mathbf{x}} = -\rho \omega^2 C^{\mathbf{W}} \int_{\overline{\mathbf{X}} \in \Omega} (\overline{\mathbf{x}}/\overline{\mathbf{x}}'; \omega) w_1(\overline{\mathbf{x}}) d\overline{\mathbf{x}} .$ (2a)

In the present circumstances, C_w and C^p are replaced by $C_wH(\bar{x}/X)$, $C^pH(\bar{x}/X)$,

where

$$H(\overline{x}/X) = \begin{cases} 1 & \text{if } \in X \\ 0 & \text{if } \neq X \end{cases}$$
ORIGINAL PAGE IS
OF POOR QUALITY

Note that since C_p and C^w are nonzero, no change in the manner that they are handled in the analysis is required. The fact that these terms are discontinuous at the boundaries of the trim covered areas is of no consequence.

Substitution for C_w and C^p in Eqs. (1a) and (2a) gives

$$\int_{\Omega} (\delta(\bar{\mathbf{x}}' - \bar{\mathbf{x}}) + C_{\mathbf{w}} \mathbf{H}(\bar{\mathbf{x}}' / \mathbf{X}) G(\bar{\mathbf{x}} / \bar{\mathbf{x}}'; \boldsymbol{\omega})) \mathbf{w}_{1}(\bar{\mathbf{x}}') d\bar{\mathbf{x}}'
= \int_{\Omega} G(\bar{\mathbf{x}} / \bar{\mathbf{x}}'; \boldsymbol{\omega}) (\mathbf{p}^{O}(\bar{\mathbf{x}}') - C_{\mathbf{p}} \mathbf{p}_{2}^{\mathbf{i}}(\bar{\mathbf{x}}')) d\bar{\mathbf{x}}' \quad (1a)$$

and

$$\int_{\Omega} (\delta(\bar{\mathbf{x}} - \bar{\mathbf{x}}') + \rho \omega^{2} C^{p} \mathbf{H}(\bar{\mathbf{x}}/\mathbf{X}) G_{p}(\bar{\mathbf{x}}/\bar{\mathbf{x}}'; \omega)) p_{2}^{i}(\bar{\mathbf{x}}) d\bar{\mathbf{x}}$$

$$= -\rho \omega^{2} C^{w} \int_{\Omega} G_{p}(\bar{\mathbf{x}}/\bar{\mathbf{x}}'; \omega) w_{1}(\bar{\mathbf{x}}) d\bar{\mathbf{x}} \quad (2a)$$

Consider the left hand side of Eq. (1a). Let

$$\mathbf{w}_1(\mathbf{\bar{x}}) = \sum_{\mathbf{S}} \xi_{\mathbf{S}} \psi^{\mathbf{S}}(\mathbf{\bar{x}}).$$

Then

$$\int_{\mathcal{Q}} (\boldsymbol{\delta}(\bar{\mathbf{x}}' - \bar{\mathbf{x}}) + C_{\mathbf{w}} \mathbf{H}(\bar{\mathbf{x}}' / \mathbf{X}) \mathbf{G}(\bar{\mathbf{x}} / \bar{\mathbf{x}}'; \boldsymbol{\omega})) \sum_{\mathbf{S}} \xi_{\mathbf{S}} \psi^{\mathbf{S}}(\bar{\mathbf{x}}') d\bar{\mathbf{x}}'$$

$$= \sum_{\mathbf{S}} \boldsymbol{\xi}_{\mathbf{S}} (\psi^{\mathbf{S}}(\mathbf{\bar{x}}) + \int_{\boldsymbol{Q}} \, \mathbb{C}_{\mathbf{W}} \mathbb{H}(\mathbf{\bar{x}}'/\mathbf{X}) \psi^{\mathbf{S}}(\mathbf{\bar{x}}') \, \mathbb{G}(\mathbf{\bar{x}}/\mathbf{\bar{x}}'; \boldsymbol{\omega}) \, \mathrm{d}\mathbf{\bar{x}}')$$

$$= \sum_{\mathbf{S}} \boldsymbol{\xi}_{\mathbf{S}}(\psi^{\mathbf{S}}(\mathbf{\bar{x}}) + \int_{\mathbf{X}} C_{\mathbf{W}} \psi^{\mathbf{S}}(\mathbf{\bar{x}'}) G(\mathbf{\bar{x}}/\mathbf{\bar{x}'}; \boldsymbol{\omega}) d\mathbf{\bar{x}'}).$$

Now

$$G(\bar{x}/\bar{x}';\omega) = \sum_{n} \frac{\psi^{n}(\bar{x})\psi^{n}(\bar{x}')}{M_{n}Y_{n}(\omega)} .$$

Thus the left-hand side of (1a) becomes

$$= \sum_{\mathbf{S}} \xi_{\mathbf{S}}(\psi^{\mathbf{S}}(\bar{\mathbf{x}}) + C_{\mathbf{W}} \int_{\mathbf{X}} \frac{\psi^{\mathbf{n}}(\bar{\mathbf{x}})\psi^{\mathbf{n}}(\bar{\mathbf{x}}')}{M_{\mathbf{n}}Y_{\mathbf{n}}(\boldsymbol{\omega})} \psi^{\mathbf{S}}(\bar{\mathbf{x}}') d\bar{\mathbf{x}}')$$

$$= \sum_{\mathbf{S}} \boldsymbol{\xi}_{\mathbf{S}} (\boldsymbol{\psi}^{\mathbf{S}}(\mathbf{\bar{x}}) + (\mathbf{C}_{\mathbf{w}}/\mathbf{m}) \sum_{\mathbf{n}} \frac{\boldsymbol{\psi}^{\mathbf{n}}(\mathbf{\bar{x}})}{\mathbf{M}_{\mathbf{n}} \mathbf{Y}_{\mathbf{n}}(\boldsymbol{\omega})} \int_{\mathbf{X}} \mathbf{m} \boldsymbol{\psi}^{\mathbf{n}}(\mathbf{\bar{x}}') \boldsymbol{\psi}^{\mathbf{S}}(\mathbf{\bar{x}}') \, \mathrm{d}\mathbf{x}') \ .$$

Now

$$\int_{\Omega} m \psi^{n}(\bar{x}') \psi^{s}(\bar{x}') dx' = \begin{cases} M_{s} & ; n=s \\ 0 & ; n \neq s \end{cases}$$

ORIGINAL WAS TO THE OF POOR QUALITY

In the referenced paper, it was an oversight that \int_{X} above was evaluated as \int_{Q} . Note if X = Q,

$$\sum_{\mathbf{n}} (\psi^{\mathbf{n}}(\bar{\mathbf{x}}) / \mathbf{M}_{\mathbf{n}} \mathbf{Y}_{\mathbf{n}}(\boldsymbol{\omega})) \int_{\mathbf{X}} \mathbf{m} \psi^{\mathbf{n}}(\bar{\mathbf{x}}') \psi^{\mathbf{S}}(\bar{\mathbf{x}}') d\bar{\mathbf{x}}'$$

$$= \psi^{\mathbf{S}}(\bar{\mathbf{x}}) \mathbf{M}_{\mathbf{S}} / \mathbf{M}_{\mathbf{S}} \mathbf{Y}_{\mathbf{S}}(\boldsymbol{\omega}) = \psi^{\mathbf{S}}(\bar{\mathbf{x}}) / \mathbf{Y}_{\mathbf{S}}(\boldsymbol{\omega}) .$$

This yields for the left-hand side

$$\sum_{\mathbf{S}} (1 + (C_{\mathbf{w}}/mY_{\mathbf{S}}(\boldsymbol{\omega}))) \xi_{\mathbf{S}} \psi^{\mathbf{S}}(\bar{\mathbf{x}}),$$

which is the result in the paper.

It can be seen that the actual result should have been

$$\begin{split} \sum_{\mathbf{S}} &(1 + (\mathbf{C}_{\mathbf{W}}/\mathbf{m}\mathbf{M}_{\mathbf{S}}\mathbf{Y}_{\mathbf{S}}) \int_{\mathbf{X}} \mathbf{m} \boldsymbol{\psi}^{\mathbf{S}}(\mathbf{\bar{x}}') \, d\mathbf{\bar{x}}') \, \boldsymbol{\xi}_{\mathbf{S}} \boldsymbol{\psi}^{\mathbf{S}}(\mathbf{\bar{x}}) \\ &+ \sum_{\mathbf{S}} & \boldsymbol{\xi}_{\mathbf{S}} \sum_{\mathbf{n}} (\mathbf{C}_{\mathbf{W}} \boldsymbol{\psi}^{\mathbf{n}}(\mathbf{\bar{x}}) / \mathbf{m}\mathbf{M}_{\mathbf{n}}\mathbf{Y}_{\mathbf{n}}) \int_{\mathbf{X}} \mathbf{m} \boldsymbol{\psi}^{\mathbf{S}}(\mathbf{\bar{x}}') \boldsymbol{\psi}^{\mathbf{n}}(\mathbf{\bar{x}}') \, d\mathbf{\bar{x}}' . \end{split}$$

Let

$$\int_{X} m \psi^{S}(\bar{x}') \psi^{n}(\bar{x}') d\bar{x}' = \begin{cases} M_{S}^{X} ; & n = S \\ \epsilon_{nS} M_{S}^{X} ; & n \neq S \end{cases}$$

The above becomes

$$\sum_{\mathbf{S}} (1 + C_{\mathbf{W}}^{\mathbf{X}} / \mathbf{m}^{\mathbf{M}}_{\mathbf{S}} \mathbf{Y}_{\mathbf{S}}) \boldsymbol{\xi}_{\mathbf{S}} \boldsymbol{\psi}^{\mathbf{S}}(\mathbf{\bar{x}})$$

$$+ \sum_{\mathbf{S}} \sum_{\mathbf{n}} \boldsymbol{\xi}_{\mathbf{S}} \boldsymbol{\psi}^{\mathbf{n}}(\mathbf{\bar{x}}) C_{\mathbf{W}} \boldsymbol{\epsilon}_{\mathbf{n}} \mathbf{S}^{\mathbf{M}}_{\mathbf{S}} / \mathbf{m}^{\mathbf{M}}_{\mathbf{n}} \mathbf{Y}_{\mathbf{n}} \quad \bullet \quad (\mathbf{s} \neq \mathbf{n})$$

The last term (double sum) can be understood as coupling of the structural modes introduced by the trim installation.

It is reasonable to expect that for all significantly transmitting modes (i.e., those that are largely shell as opposed to totally floor modes), that

$$|\epsilon_{ns}| < 1$$

and that for those modes

$$\frac{1}{N_n}\sum_{n=1}^{N_n}\epsilon_{ns}\ll 1.$$

Assuming this is so is equivalent to assuming that the double sum can be neglected, i.e., that damping of structural modes through intermodal coupling is insignificant because energy flowing out of one mode to another will be replaced by energy flow into the mode via yet a third mode. This assumption reduces the left hand side of (1a) to

$$\sum_{\mathbf{S}} (1 + (C_{\mathbf{W}}/\overline{\mathbf{m}}_{\mathbf{S}\mathbf{S}}^{\mathbf{Y}}(\boldsymbol{\omega}))) \xi_{\mathbf{S}} \psi^{\mathbf{S}}(\mathbf{\bar{x}}) ,$$

$$\bar{m}_s = mM_s/M_s^X$$
.

Continuing, reconsider (1a) which leads to Eq. (6) of the reference. In the present circumstance (6) becomes

$$-Y_{\mathbf{r}}(1+(C_{\mathbf{w}}/\overline{\mathbf{n}}Y_{\mathbf{r}}))M_{\mathbf{r}}\xi_{\mathbf{r}}+\Gamma_{\mathbf{p}_{\mathbf{r}}}^{\mathbf{r}}-C_{\mathbf{p}}\Gamma_{\mathbf{p}_{\mathbf{2}}}^{\mathbf{r}_{\mathbf{i}}}=-\Gamma_{\mathbf{p}_{\mathbf{b}_{\mathbf{i}}}}^{\mathbf{r}}$$

Thus no significant algebraic changes appear.

Now consider Eq. (2a). $w_1(\bar{x})$ is replaced by the modal sum, (2a) is multiplied through by $\psi^r(\bar{x})$ and integrated to obtain:

$$\int_{\Omega} \psi^{\mathbf{r}}(\bar{\mathbf{x}}') \int_{\Omega} (\delta(\bar{\mathbf{x}} - \bar{\mathbf{x}}') + \rho \omega^{2} C^{p} \mathbf{H}(\bar{\mathbf{x}}/\mathbf{X}) G_{p}(\bar{\mathbf{x}}/\bar{\mathbf{x}}'; \boldsymbol{\omega})) p_{2}^{i}(\bar{\mathbf{x}}) d\bar{\mathbf{x}} d\bar{\mathbf{x}}'$$

$$= -\rho \omega^{2} C^{w} \sum_{s} \mathbf{I}^{rs} \xi_{s} .$$

This reduces to

$$\Gamma_{p_{2}}^{\mathbf{r}_{1}} + \rho \omega^{2} C^{p} \int_{\Omega} \int_{X} \psi^{\mathbf{r}}(\bar{x}') G_{p}(\bar{x}/\bar{x}'; \omega) p_{2}^{\mathbf{i}}(\bar{x}) d\bar{x} d\bar{x}'$$

$$= -\rho \omega^{2} C^{w} \sum_{s} I^{rs} \xi_{s} .$$

Following the analysis in the reference, the above can be shown to lead to a modification of Eq. (10) of the paper, i.e.,

$$b_{rn} = \frac{C_{p}C^{p}\rho\omega^{2}\epsilon_{n}Af'(n,r)}{V(\bar{\lambda}_{n}^{2} - k^{2})} \int_{X}^{\phi_{n}^{2}(\bar{x})d\bar{x}}.$$

Other than this, there are no changes.

It follows, that as a final conclusion, the "structural" loss factor η_n^* should be given by the result

$$(\eta_{r}^{!})^{2} = \left| c_{w}^{2} \right|^{2/\bar{m}_{r}^{2}} \omega_{r}^{4} - 2c_{w}^{I} \eta_{r}^{/\bar{m}} \omega_{r}^{2} + \eta_{r}^{2}$$
.

(Note that the new variable \bar{n}_r is used only within the context of the calculation of η_r).

A question might now be asked as to whether the trim coverage is correct as related to the prediction of transmission through the trim. The answer is "yes", because the presence of trim on the sidewall and its absence on the floor is accounted for in Eq. (52) of the PAIN model (Ref. 1). Note that the trim transmission coefficient $\tau_{\rm t}(=|{\rm C}^{\rm W}|^2)$ multiplies only one of the two terms in the braces of Eq. (52). A bar is placed over the f, in ${\rm f'}({\rm n,r})$ to distinguish it from the term ${\rm f'}({\rm n,r})$ (no bar over f) with purpose being to limit trim to sidewall and exclude it from the floor.

Program Changes

All required programming changes to PAIN and its subroutines, or to auxiliary programs, are specified below.

Program PAIN

1) Changes required to calculate the modified result for $\eta_r^!$ as found in this appendix, letting $M_s^X=GMASS(IR,2)$; $M_s=GMASS(IR,1)$:

Subroutine ETASTR

Line 47 to become

CWI=AIMAG(CW)*GMASS(IR,2)/GMASS(IR,1)

Line 50 to become

CWMOD2=REAL(CMOD2)*(GMASS(IR,2)/GMASS(IR,1))**2

2) Changes required in the calculations of f'(n,r) and f'(n,r) of Eq. (52) of Ref. (1) related to misinterpretation of sign convention used in the program MRP:

Subroutines TONE and NRED

Line 107 of TONE and Line 79 of NRED to become FNR2=(FQM(IQ,M)*(FINS(N1,IR)-FINP(N1,IR)))**2

Line 111 of TONE to become

FNR2=(FQM(IQ,M)*(FINS(N1,IR)*SQRT(TAUH)-FINP(N1,IR)))**2

Line 83 of NRED to become

FNR2=(FQM(IQ,M)*(FINS(N1,IR)*SQRT(TAU)-FINP(N1,IR)))**2

3) Changes required to limit blocked pressure amplitudes of propeller field to a 4 dB increase over free field levels:

ORIGINAL PAGE IS

Subroutine PROP

Line 49 to become

REFL=(10.0**(0.3-0.000224*EXP(0.08*GAMA)))*0.8

4) Changes to prevent printing truncation of large values of generalized masses for narrow body fuselages:

Program PAIN

Line 379 to become

6005 FORMAT (T10,I3,F8.2,1X,A5,F9.5,I4,I3,F7.4,I4,F7.4,F9.2,F8.3,F8.3

5) Changes to allow propeller input data to be of the form of that for blade downsweep only:

Program PAIN.

Following the Comment Card "C...Propeller Data", add

- C INPUT DATA CREATED WITH ANOPP TO BE BLADE DOWNSWEEP ONLY
- C PAIN WILL CREATE DOWNSWEEP OR UPSWEEP USING ANOPP DOWNSWEEP

Subroutine PROP

Line 54 to become

DELPH=2.0*B*IH*ALPHAL(L)

Following Line 63: "24 CONTINUE", insert 12 Cards

IF(ROTN.EQ.+1.0) GO TO 30

DO 29 IH=1,NHARM

DO 29 K=1,NK

DO 29 L=1,10

LU=L+9

LB=11-L

PX=PMH(K,LU,IH)

PY=PMH(K,LB,IH)

PMH(K,LU,IH)=PY

ORIGINAL PAGE IS OF POOR QUALITY

29 CONTINUE

30 CONTINUE

Program MRPMOD

1) Changes to allow acceptance of increased eigenvector output by MRP (40 instead of 30 eigenvectors)

Line 13 to become

C...MTOTAL=HIGHEST VALUE OF M CONSIDERED (MAX 15)

Lines 15 and 16 to become

C...FOR EACH VALUE OF M (MAX NMODES=20)

C...NMOD=2*NMODES (MAX NMOD=40)

Lines 64 through 67

DIMENSION STYPE(2), TYPE(2,5), FREQ(40), TYPNM(2), NMODE(40),

- 1 DMAX(40), COORDS(41), COORDP(41), DISPS(41,3,40),
 TMODE(40,5),
- 2 DISPP(41,3,40),GENM(6,40),GENMAS(40),DUMMY(700), NA(700),
- 3 TITLE(16), NORD(700).

Lines 68 through 70

DIMENSION EVALS(72), MVALS(40,15), NVALS(40,15), EVECS(40,15),

- 1 MVALP(40,10),NVALP(40,10),EVECP(40,10),MVLS(40, 15),NVLS(40,15),
- 2 EVCS(40,15),MVLP(40,10),NVLP(40,10),EVCP(40, 10),TYPP(40)

Lines 72 through 74

DIMENSION FR(40,15), TYP(40,15), GMASS(40,3,15), MVS(40,5,15),

- 1 NVS(40,5,15), EVS(40,5,15), MVP(40,3,15), NVP(40, 3,15), EVP(40,3,15),
- 2 DIS(40,41,15),KTL(2)

Control Card Changes

1) Control cards for MRPMOD showing required DEFINE statement needed to create direct access permanent file.

```
/JOB
PAIN, T400, P1.
/USER
/CHARGE
ROUTE, OUTPUT, DC=PR, UN=*, ST=**, FID=POPE, DEF.
DEFINE.TAPE9=STR50.
GET . MRPMOD4.
ATTACH, TAPE7=MRPSM4.
ATTACH, TAPE8=MRPAM4.
GET, MRPMODC.
COPYBF, MRPMODC, LGO.
LDSET(PRESET=ZERO)
LGO,PL=50000.
GOTO, SUMMARY.
EXIT.
SUMMARY.
DAYFILE.
NOSEQ
/EOR
/READ, MRPMOD4
/EOF
```

2) PAIN control cards (modified program PAINM) showing use of structural modal file as direct access type.

```
/JOB
PAIN, T400, P1.
/USER
/CHARGE
ROUTE, OUTPUT, DC=PR, UN=*, ST=**, FID=POPE, DEF.
GET, PAINMD4.
GET, TAPE11=CYL50.
ATTACH, TAPE9=STR50. Direct access file to local file
GET, PAINMC.
COPYBF, PAINMC, LGO.
LDSET (PRESET=ZERO)
LGO,PL=50000.
GOTO, SUMMARY.
EXIT.
SUMMARY.
DAYFILE.
/NOSEQ
/EOR
/READ, PAINMD4
/EOF
```

OYL2D control card change required to access the International Mathematical and Statistical Library (IMSL) subroutines.

Instead of

ATTACH, IMSL/UN=LIBRARY.

Use

BEGIN, IMSL4, IMSLCCL.

Appendix B

SCALE MODEL PREDICTIONS

- Structural modes list (partial)
- Acoustic modes list (partial)
- . Modal distributions

In sequence for the 3000, 4000 and 5000 rpm runs:

- Propeller noise data (1st 3 harmonics)
- Interior predictions
- . Highest modal contributors to interior levels

4 1 4 1	F TAMEL.		1									
STRU	STRUCTURAL	MODES										
RODE	FRE	NODE	1055	SHE		LATE	GENER	AL 1 ZE D	ASS (K			
2	(H)	TYPE	FACTOR	Z Z	CHES	N. CHE	TOTAL	N TIBES	PLATE			
-	186.52	SYMM	.08121	1 2 -	10664	0 .4150	1,1392	•	1:1	î	5	
2	2	STHR	17692	1-21	0769	1.4	1.126	•	1.059	P		
m ≺	237.88	NA AN	01241	· · ·	1210	4644 0	1.0627	\$100°	1.0610	1.1520E-0		
· •	2	SYAR	000990	· ·	000	465	-		1.055	7030E		
9	301.93	SYMM	.29197	1 2	5		3.35	2.3	.47	ш		:
7	9	SYMM	.00778	• • E	0306	i	1.040	•	-	6.7549E		
30 G	E1 9 9 1 E	ANTI	10034	7- 2 [9 4	1 7181	5.3369	2 .	-	7.1061E	m e	
10	700	NEX	10500	n 14	7500	SALE OF S	1.552	4	-	1.22075		
11	441.78	SYN	.00522	1	.0256	496			-	1,97366-		
12	70.5	ANTI	.03837		.4241	482	!	•	=	1.0370E		
13	2	SYMM	.05963	1 1	7676	• 666	•	N	•	2.98426	13	
14	28	ANTI	.06963	•	6679	1.129		~	•	2.6837E	61	
15	555.05		.06727		6155	260		~ .		2.1736E	0	
9:	558.43		02146	٠.	4304	00.			<u>.</u> .	4.3450E	F	
- E	372.86		02120		1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	,			3.509 3E	P(
2 61	591.68	SYMM	.05297		4236		-	1.5269	•	-) (
20	607.50	۲	20450.	•	1245	. 843		7		1.35396-0	R	-
21	626.01	ANAI	.02170	* E E	2662*	2 1.5886	1.9536	0 1	1.2366	4 - 51 60E - 0	PQ	
23	636.15		.00321		0046	480	•	8	1.051	1076E	υ <i>/</i>	
52	641.20		.00342	n	0255	. 953		00.	1.026	3.2791E-0	\L 	!
22	648.70		.05034	4 2	. 5414	i	,	7		1.4396E	17	
92	063630	LLM	00356	·	1960*	109				6.1425E-	Y	
- 28	717.33	ANT	11020	•	4201			• [,	A. 1750F		
2 62	738.44	E N	03796	. 4	5923	. 615	• •••	-		9.43606-		
0E	•	SYMM		11 m	6369		•••	2		1.13036		
31	~	ANTI	.05109	m	,6081	i	•	2		•	*	
	811.04	ILNE	\$2150	•	.4486	339		1.	, '	7.21876		
9	11.6	INA	86	Pi k	0620	.610		• 1 1	_	2 4 1 4 7 E - O	9 =	
# K	0.55.28 0.55.28	FLAA	.00742	, 4	1006	1,065		• •	_	4.7712E	· •	
36	73.1	TINA	.05285	7	. 6547	• • •	• •••	~		1 . 02 0 BE		
37	073.45	ANTI	•00602	1 5 .	~	i	=	•		1.10036		
38	2	NH AS	20660.		5	990	1674-1	10801	160E: 1	36,77036		
34	802.03	FEAT	00450	, , , , , , , , , , , , , , , , , , ,	1777	5 107 V			1	6.0588		
2 7	896.04		76200	1 12 15	0300	1 .9806	_		•	2.7028E	9.	
.25	Š	SYAM	.05680	•	6	3 5543	4.495	3 3,3426	2296: 9	~		:
43	~	ANTI	057	1 5 -	90	3 .3487	5.592			1.2483E-0	13	
5	2	AHTI	2EZ60°	6 3	1162		ì					
				· • •	0176	*/ to .	177001	10.18	*100· 0	0-37 461-0		

	ORIGINAL PAGE IS OF POOR QUALITY

DEGREES, RIGIO JUNCTION G - 1.46 KG/N2	
FLOOR AT 56.6 THICK + LINEN	EPSILON EPSILON EPSILON 2.0131E+00 2.5242E+00 3.6020E+00 7.2050E+00
FUSELAGE WITH DER, STIFFENED TURE 71 IN LON PE PF105 2.0 I	FACTOR FACTOR CONTROL CONTRO
32 IN 10067	1
NASA LANGLEY STIFFENED 0.0 CAVITY 72 IN TRIM PANEL. F	NODE FREG 1 000 2 093.78 4 199.78 5 217.16 6 236.96 7 255.86 8 271.16 8 271.16 8 271.16 9 261.33 10 302.20 11 345.21 12 346.75 13 356.71 14 367.63 15 446.13 24 443.67 21 443.67 22 443.67 24 443.67 24 443.67 25 466.75 26 466.13 27 472.63 26 466.13 27 472.63 28 556.10 39 507.10 39 507.10 39 507.10 30 508.15 40 570.25 41 572.26 44 5872.65

ORIGINAL PAGE IS OF POOR QUALITY OF POOR QUALITY IN 1990 OF POOR QUALITY IN 1990 OF POOR QUALITY OF POOR	- HODAL INFORMATION	OKMATTON									
OF POOR QUALITY OO NOT ON THE STATE OF THE	FREQUENC (HZ)	NO OF	URE FIRST MODE IN BAND	NO OF MODES	~ Z						
OF POOR QUALITY							: : : : : : : : : : : : : : : : : : : :				
OF POOR QUALITY ON DOMESTIC STREET S	50.		00	00	0 0	- 1					:
F POOR QUALITY O TO STATE OF THE STATE OF T	100.		00	0-	D N				Q		
POOR QUALITY	125.		9 C	D C	00				RIC F I		
OR QUALITY OF TAKE TO SEE TO	200	:) m &				GIN. POC		
DUALITY DUALITY O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	318	i :	100	12	13		:		AL OR (
ALITY 2 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5000		12	14	52				PA:		
11	9000		27	- 49	76		2 2 2 3	1	GE AL		
30 00 00 202 30 00 0 0 202 30 0 0 0 0 202 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1000.	:	7	79	140		1		: [S T		
35 205 0 502 0 245 0 271 0 9 271 0 9 290 0	1620.		100	n 9	202				•		
26 245 0 0 0 571 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2000		169	£ 0	368						
0 062	3150		245	06		•					
	2000	1	062	00							1
1 1 1	:			:	:						
1											
1											
1											
							•				
		and the state of t								÷	

	JUNCTION		
	A1610		K6/H2
	6 DEGREES		IING - 1.46
X	R AT 56.		CK + LI
TH FLOO	NED FLOD	ONG T	THI NI O
SELAGE W	STIFFE	11 IN 1	F105 2.
NODEL FU	CYL INDER	STRUCTUR	AS TYPE
T SCALE	.032 IN	SNO T	FIBERGL
NASA LANGELY SCALE NODEL FUSELAGE WITH FLOOR	STIFFENED 0.032 IN CYLINDER, STIFFENED FLOOR AT 56.6 DEGREES, RIGID JUNCTION	CAVITY 72 IN LONG, STRUCTURE 71 IN LONG	TRIM PANEL, FIBERGLAS TYPE PF105 2.0 IN THICK + LINING - 1.46 KG/MZ

		•	•				
		ENDCAP ADMITTANCE REAL ITAG	31166E-0317163E-01 31912E-0318932E-01	1 1 1	.12105E-0238055E-01 .35326E-0350001E-01 .30556E-0263481E-01 .4587E-0280829E-01 .28412E-0210749E+00	.15705E-0213564E+00 .12720E-0217512E+00 .11206E-0124023E+00 .28631E-0132123E+00 .73771E-0143522E+00	
6/HZ 70 H 0.0000 KG/HZ	00	ADNITTANCE Imag	.19551E+00 .	.11099E+00 .74532E-01 .32660E-01 .	-27577E-01 -16340E+00 -43192E-01 -23693E+00	.96549E-01 .5458BE-01 .4358E-01 .3532E-01	.223926-01 .178406-01 .141406-01 .111276-01
1.4560 K 5080 H N+2 .130000	.67440 N#2 FACTOR - 1.000000	BAND AVERAGE Z LOSS FACTOR ADMITTANCE ETA R+ Z	**************************************		62 . 56526E-01 62 . 56526E-01 540 . 66012E+00 763 . 96060E-01 13 . 31752E-01		
ASSYDNIT ARE HICKNESS = 3.57 REA = 3.57 OSS FACTOR = LATION THICK PANEL MASS!	PANEL LOSS	TRIM CTOR DB	860	• • •	-7.871 4.650482 -17.316 .090182 -4.860 .025640 2.701 .140783	12.475046292 15.209 .022471 19.992 .030452 23.229 .038648 27.827 .033388	
H-PANEL M ULATION T ULATION T M PANEL A H PANEL L CAP INSU	END CAP TRIM	FREQUENCY FA	50.0	80.0 100.0 125.0	160.0 200.0 250.0 315.0	1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0002 0.0004 0.0004 0.0005
					-	187-	

ORIGINAL PAGE 19

ORIGINAL	PAGE	13			12.													•			6			• •	e 1	· ·		m. 1	.7	~	•
F POOR	QUAL	YTI			16		98	8	9 6	6	₽ €		D (C)	6	• •		9 6	90	90		-122	-129	-135	-134	-126		-68	-33	23	7	
	:		!	:	15	:	_		80	0	Ň -	. In			: :	<u>ا</u>	•	80.5			~	3	<u> </u>	3	-128.0	26	99	L 6			о г
					14			89.3	90.2	93.0	97.3	0.80	96.0	0.00	97.3	95.7	91.3	2006 80.2	86.5		29.	135.1	96	35	-127.4	18	9	90		43.9	9
	• :	-		;	13		9.68	90.3	93.0	95.3	101.1	20	38	102.9	5	7.80	93.0	91.5	4.68		•	0	2	~	-126.9	- 60	~	- 6			
					12011		. •	i •	9.16			1		108.6				92.7	90.1	;	•		- -	~	-127.2 -	-	-	v 4	0	0 -	4 2
					11		90.6	-		- : - :			•	m =	•	• •		- 1	9	:	41.9	47.3	30.3	41.1	29.2	85.8	58.5	= 0	0	~ -	4 6
					6E 0.	MICRO		~ <		+ 0	- m	0 6	-	v 0	m	> •	·	94.0	•	:	. 2	7		9	35.1 -1 12.6 -1		•		0	42.2 42.2	
		6.90.00	.		.751	B RE 20	•	m -		•		7		4 N	-	.	'n.	92:3	0	ES)	_	0 -	• ~		-150.6 -135 -125.9 -112		-	۰ 🛶	0	•	. ~
ANCE		REEST		CATION	299•	UDE, DI	•	2	: :	m 🚅				. :	_	_	: -	2:26	_ [OEGRE	0	_ 0	: h		ه -	94	*	- 0	•	~ 0	۸ ر
H CLEAR		52 71 (DEG E (M) =	• •	XIAL LO	.573	AMPLIT	-		: 	5 K	7	D m	: 	m 🗩	~		: - -	-	-	PHASE	2.1	2.0		5	50.3 -168		m	. 2	0	• i •	4
0.076		AG C 8		~	4 65	ESSURE	J		,	i			:	:				1.8 92		:	7	-	•		7.9	—	7	7	(T)	1	ï
O PPR.		/L (M) = 10 FUSELAGE			396	~		n	b		=	7	21 1	2				6			6 -17	.5 159			13.	41.4	169	0 -126	26-	55	2 -34
300	1	6 6						.5	0 "	- !	7		:	==	7		96	16	•	:	3 175	1 140	137	128	134	148	169	2 -125	193	15.6	7
3 BLADES	150	M FUSELAGE Ne from Pr Rop Forwar	3.0 HZ		6		0	2 40 1 92	* O	•	~	m		108:7			0 94. 1 92.	.06E	-		172.		134.	128.	134.	149.	171	-124.	-93	-55	-43
AMETER	(ZH)	AND LT	T 150		9		99	5 6	W .	66	102.	0	104	103	102.	95	· -	59		: ! !	170.	143.	186	127	136.2	151	-153	-122.	- 69	- 54	-43.
H DIAH	3000.0	TICAL TICAL	T 1 3)		.13	1	96	6	9	96	0	6		66	9 6	.	89.5	B 4	5		170.9		F	7 %	130.2	20 6	5:161-	-119.6	-68.8	. (1)	-45.2
R. 0.76	OF BLADES # 3. ER RPM # 3000.0 ASSAGE FREQUENCY (HZ) # 1	ETWEEN VER	HARMONIC		150° =2		85.5	97.6				9		94.2	. 2	0	9.78	- K			172.1	146.2	137.2	132.2	141.1	156.6	2 12	16.5	~ 0	200	-39.7
311	NUMBER OF PROPELLER SLADE PASS	NGLE BETW	OPELLER	IRCUM.	THETA		180.00	160.00	U 4	30.	00.021	00.00	80.00	70.00	50.00	40.00	20.00	10.00			40.0	60.00	50.00	30:00	120.00	10.00	- 1	i		20.00	00.00
	NO WORK	ANG	PRO		3	1	61				- 1	111	2 0		م .			~ -				17 1	ı		13 1		- 1			0	. I

PROPELLER "NUMBER" OF PROPELLER	~ ~ ~ .												ORIGIN DF PO	OPIC		
LADE FISTANCE	- 5	ER C	FROM F	150.0 FUSELAGE	7/3	•	2696			:			OR			
NGLE I	P 2	TCAL AN		FRUNT	07 40 0 END	USELAGE F FUSEL	CZC AGE	(DEGREES)	6620	0			PΛ QU			
PROPELLER	: 5	2 AT	300.0	ZH I			:						CE ALIT	•		
CIRCUM.							AXIAL	LOCATIO	NO				Y			
LOCATION	K.	2	3					30	~	10	11	12		1	51	91
L THETA	Z.	130	•219	.307	936	. 483	.573	799	.751	• B 3 6	.92B	1.017	1.105	1.194	1.283	1.371
		!		:		PRESSU	RE AMPL	ITUDE.	08 RE 2	O MICRO	44			1		
19 180.00	59.6	62.0	63.9	65.8	67.3	68.2	6.60	68.9	69.8	60.2		1,99	64.	_	60.8	80
0.071	•09	e.	2.60	10	1.69	2.07	6	70.8	6	●	. 68	•	59	2.69	60.6	58.2
50.0	• •	9.59	1.69	72	75.3	_	2.77	77.1	76.5	75.4		20.02	67.		9.09	۰.
140.0	62	67.4	71.9	76.	900		03.5	0.20	85.0	1.00	2	74.4	69	•	8.09	9
4 130.0	£9	70.1	75.6	81.	. 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9		91.3	90.1		99	•	79.5	£ ;	-	6.19	•
3 120.	63	211/	0.87	62.5	72.0		2 A C	0.46	, ,	100	90	1000	2	- 1 4	109	, r
1001	61	70.2		0.68	99.2	-	115.2	11111	113.1	106.2	96	96.2	76		38.5	9
90.	9	70.0			9.66		116.6	112.3	•	106.9	96	96.3	76.	_	59.2	•
80.	61	70.2	•	89.0	99.2	•	115.2	1111.1	-	106.2	96	86.2	76.	-	28°	ċ
200	62	71:1	78.9	87.9	96.7	-	10801	104.9	9	101.7		82.9	6 £		61.6	, ,
200	63	100		9119	فان		91.3	1.00	89.5	0.98	96.	79.5	73.		6.19	6
40	62.	67.4	71.9	16.6	è	1	93.5	85.8	82.0	60.7	78	7.4	69	_	9.09	ġ,
4 30.00	61.4	65.6	69.1	\sim o	75.3	77.0	77.5	77.1	76.5	75.4	73.5	70.8	649	63.7	909	57.7
10	9	63.0				, 0	70.7	70.8	70.5	69.69	68.	67.1	63		60.8	58.2
ė	59.	62.0	• 1	5		-	68.8	699	68.8	2.89	67.	66.1	940		60.8	
						;	PHA	SE (DEG	REES	:		•				
180.0	7.801 0	•	'n	93.3		6.5	101.4	106	115.5	22.	129.5	135.4		145.7	151.6	158.0
170.0	. 82	77.2	74.1	72.5			8.2.8	16	100.7		116.6	122.3		131.3	136.2	141.8
160.0	9	• 1	52.7	51.2	• 1	6.3	64.2	75	99.5	-	106.9	112.1		118.7	122.1	126.4
-	- 24	• •	35.4	33.7	34.3	9 9	9.04	6 6	95.5	111.6	119.1	121.7		121.7	121.4	121.9
130.0	14	2.		•		1.2	52.6		115.6	132.4	137.9	136.0	-	136.0	134.1	132.9
120.00	2.69 0	5	62.0	_	•	70	70.1	108	155.6	169.4	172.1	171.2	0	166.4	163.3	160.8
110.00	1.601	96	3	5 6		2.16	9.76	191	1001-	0.00	6.041-	•	D (-123.4	C*/C1-	-100-6
0.00		2 7			יון ה		139.6	100	2,86.5	-255.8	27/6-		-31.5	36.6	1.03	-66.9
	-91.4	85.5	9.89	-91.5	-93.9	95.2	-91.9	-30.7	32.5	36.0	34.6	31.9	28.7	25.4	21.5	17.8
70.00	7 21.7	25.	28.	33	~	33.6	-26.0	23	800.8	89.2	99.4	91.4		61.4	7.77	74.4
0000	A-81 C	•	•		7 ° C C		1 4 0	מ מ	107.5	11411	1.121	4.021		110.0	113.0	110.7
20.00	41.04	: ;	•	30.00	50.6	9	7 · · · ·	C &	1111.7	127.0	136.4	128.0		130.0	137.4	134.2
0.0	68.8	: :	-) -	20.00	0.00	2.0	14.7		107.8	121.5	120.6	B.E.E.		137.1	7.88	1,171
20.00	73.9		•	: ;	65.4		77.3	. 6	101.3	112.2	120.1	125,3		131.9	135.3	139.5
10.00	78.9			•	40.7	-	70.3	4	1					127.7		
		•	•	•		700	- 4 -	0	7		7 7 20 0	0 • OT T		10197	1961	R * 0 * T

	PRUPELLER				-														
1	PROPELL	8 L	25			1		:	;	•								4 <i>NK</i> 009	•
	9	~	: -	0.000									;				:	L R	
	BLADE PAS DISTANCE	SSI	_ =	UENCY (HZ)	FREQUENCY (HZ) • "150.0" Peller C/L From Fuselage C/L	E) 1/3	•	9652				:					PA QU	
	NGI.	E	-	TCAL AN	O LINE	FROM PR	5	AGE	5	REES	00.00	0						GE AL	
	DISIAN		PROPEL	LEK PLA	L L L	FORVAR	O END O	N	Y 6E		0299						•	: IS	
	PROPELL	¥ .	ARMONIC	3 AT	450.0	0 H7			i i	:								1	
	CIRCU	Į.							AXIAL	LOCATIO	ž								
	L THET	¥ ~	1,00.	.130	3.219	.307	396	.485	.573	8	.751	10	.928	12	13	1,194	15	16 1.371	
1		1	i	}	į	1		ESS	٠ ٦	-	RE 2						•		
		:		١, ١	1	١,					,							, ,	
	8	0	ای	-	40.1	•	44.9	•	-	•	•	•	£.53	•	•	37.6	•		-
	091 2 2 160	90	34.0	39.0	41.3	47.0	50.2	52.3	53.2	5 P	95.0	50.3	47.9	7.5.4	• • • • • • • • • • • • • • • • • • •	37.3	33.1	20°2	
!	150	9		•	45.1	•	54.5				•	•	51.3	•	•	37.4	~~	•	
:	5 140	9	÷.	÷.	48.0		9.09	÷.	ġ.	'n,	ë,	•	57.0	•	÷.	38.2	—,	•	
	3 120	99	•		53.7	• •	74.9	•	: -	'n	; ;		71.2		• 0	40.0	- 0	, –	
	2 110		0	2	54.0	67.0	79.8		: 5	6	6	. •	76.0	•	6	30.6	. 60	40	
	ĕ	•	•	-	53.3	67.8	85.5	•	07.		03.	•	78.6	•	•	36.6	•	0	
	<u>ن</u> و	•	~	•	53+2	67.8	82.9	•		ŝ.	'n,	•	79.0	•	•	36.0	•	6 0.0	
- 1	5	•	∞ (<u>.</u> ,	53.3	0 7 6	6.28	•	-	•		•	9.6	•	• •	30.0	~ •	•	
90	09	900	33.2	• •	53.7	9.49	7:0	63.3	;;		• •	• . •	71.2		• •	40.6	90	> ~	
+	20	1 .			51.7	4.09	1.89	Ĩ•	•	6	E .	l •	64.4			1.05	-	'n	
	4 6	•	•	- <	40.0	•	60°6	64.7	<i>:</i>	'n		•	97.0	•	;	38.2		e 4	
	30			• •	43.0	<u>ہ</u>	50.2	52.3	53.2	M	, ~		47.9		; =	37.3		9	
	1				41.3		47.0	48.7	6				45.6		•	37.5	•	0	
			m	7.	40.1	2	44.9	46.3	-	-	•	•	44.3	• 1	•	37.6	4		
				-					PHA	SE CDEG	REES								
	:		,				: ,) () () (1		•		
	9 180	9 6	35.4	25.4	18.8	, r		7	14.0		6.02		40.0	* · · · · · · · · · · · · · · · · · · ·	37.6		65.3	, ,	
	17 160	200	-26.7	٥	-39.7	7		-41.8	-35.9	-26.1	-14.2	7.6		6.6	14.0		22.6	•	
	0 150	00		-	-54.5	-26-		-55.0	E-47.	E :	۰ ما		•	1:01	11.7		15.5	•	
F 6 8 8 7 8	140	8		<u>س</u> «	4.74	000		7.86-	140.4	1.06-	٠.	•	, c	0.22	43.7		7.07	vo	
	120	9 9		0	-12.0	-14.		-16.3	9	27	4 40	•	, w	91.4	98.3		61.7	. 0	
	2 110	8		~	41.5	37.	34.8		38	9	•	54.	53.	2	45.	•	33	25	
	1 100	00		•	113.4	108.8	105.2		2	161.4	0	0	•	• 1	-138.9	•	-153.7	0	
	06 0	000		10	5 ~	9.261-	9°661-	-15861-	9.19-		62.5	27.	59.	5 6	56.	9	9	2 C	
	70	90		9	34.3	30.5	27.7	26.5	31.5			47.3	66.5	43.2	38.5	33.2	26	•	
	9	00	9.66	3	92	٠	87.7	98.2	96.1	31.	_	9.49	62.4	0.49	67.2	70.5	73.9	2	
	6 50	000	131.8	127.4	124.2	-	120.6	122.6	131.8	157.9	-166.2	m (0 1	•	-144.5	۰-	48.6	-148.3	
	9	000	155.5	20	46	- 14	143.5	2.041	15561		-	50.4	135.7	33.0	36.9	35.4	33.0	۶ کر ح	
	3 20.	9	• •	65.	9	156.6		157.9	163.8	•		63.6	55.7	50.3	46.3	42.7	37.6	30	
:	10	0,	179.1	169.9	163.9	159.6	158.0	159.2	163.4	•		72.6	65.2	•	52.9	47.3	0	=	1

TONE TRANSMISSION AT FREQUENCIES AT OR ABOVE 1250.0 HZ I TONE TRANSMISSION AT FREQUENCIES AT OR ABOVE 1250.0 HZ I TONE TRANSMISSION FOR PROPELLER HARMONICS HARMONIC INTERIOR MEAN SO. PRESSURE NO FREO PA++2 08 PE 20 MICRO PA 1 150.0 8.5311E-04 63.29 2 300.0 1.6590E-04 64.36 4 600.0 1.7311E-05 46.36 5 750.0 6.1699E-07 27.27	OTO M CLEARANCE O HZ IS WITH HIGH FREQUENCY FORMULATION
TRANSMISSION AT FREQUENCIES AT OR ABOVE 1250. TRANSMISSION FOR PROPELLER HARMONICS IRMONIC INTERIOR NEAN SO. PRESSURE FREG PA++2 OB RE 20 MICRO PA 300.0 1.6590E-04 66.18 450.0 1.6590E-04 59.53 600.0 1.7311E-05 46.36 750.0 6.1699E-07 31.89	GH FREQUENCY
TRANSMISSION FOR PROPELLER HARMO IRADONIC INTERIOR NEAN SO. FREO PA++2 OB RE 20 300.0 1.6590E-03 66. 450.0 3.5909E-04 59. 600.0 1.7311E-05 46. 750.0 6.1699E-07 31.	
ARMONIC INTERIOR MEAN SQ. 150.0 8.5311E-04 63. 300.0 1.6590E-03 66. 450.0 1.7311E-05 46. 750.0 6.1699E-07 31.	
150.0 8.5311E-04 300.0 1.6590E-03 450.0 3.5909E-04 600.0 1.7311E-05 750.0 6.1699E-07 900.0 2.1353E-07	
450.0 3.5909E-04 600.0 1.731E-05 750.0 6.1699E-07 900.0 2.1331E-07	
700-0 C-13335-07	
1.35196-07	
10 1500.0 4.3747E-11 -9.61	
191_	
	ORIGINA OF POO
	L PACE: QUALIT

				OR OF	PACE POOR QUALI			
HODAL PATTERN . +	D FUSELAGE FOR +	HARMONIC NO. 1 AF F M. S.PRESSURE (PA+2)	.00000 2.7523E-05 .00000 3.677E-05 .00025 6.500E-05 .00704 2.1515E-04 .10790 2.6273E-04	63.29 08 8.5311E-04 HARMONIC NO. 2	**************************************	• = =	00738 00034 00128 00489	C ND. 4
-WAVES 2-DIMENSIONAL -SECTION	MODES: AXIAL HALF-WAVES CIRCUMFERENTIAL WAVES AROUND FUSELAGE SHELL GEN. COORDINATES FOR THIS MODE	150.0 HZ. TURAL MODE	25 648.7 2 4 6 301.9 1 2 4 231.0 2 4 2 208.2 1 2 1 188.5 1 2	FREQUENCY 300.0 HZ, HAR	STRUCTURAL MODE NO FREO M N 7 303.7 3 4 7 303.7 3 4 7 303.7 3 4 6 301.9 1 2	TOTAL -	Z 50440	TOTAL = 5 600.0 HZ, HA URAL HODE E0 " N
+ ACOUSTIC 400ES1 + Q = NO. OF AXIAL HALF- + I = ASSIGNED ORDER OF + INCYLINGER CROSS-	+ STRUCTURAL MODES: + M = NO. OF AXIAL H + N = NO. OF CIRCUMF + LARGEST SHELL	TR AC	2 93.8 1 0 2 93.8 1 0 2 93.8 1 0 3 187.6 2 0	TONE TRANSHISSTON FOR	NO FREG O I 16 375.1 4 0 10 302.2 2 3 187.6 2 0 10 302.2 2 10 302.2 2 10 302.2 2	TRANSHISSION F	ACCOSITE TOUR NO FREQ Q [23 443.8] 5 23 443.8] 5 24 446.9 5 0 25 446.1 3 3	TRANSMISSI ACOUSTIC FREO
	1	TONE		10 T	-192-	104	2 22220	T ON B

																									!			;					
	:			16 1.371						; ;		::						98.4			85.	96.	16.	17.	95.	88	91.	i.	66	60.3	å,	; ;	ä
				15		0	0	0	9	200		56	10	020	50	0	36	99.6			•	v	5	9	*	7:5	9	•	• 3	56.7	ء أحد	: :	
OR!G!				14		100.2	100.7	101.8	103.0	10001	106.3	106.0	106.0	106.3	10501	103.0	101.3	100.7			7.16	- 6	26.2	6.72	9.60	9006	32.2	1.1	7.1		90	7.6	9.1
				13 1.105	•	90	5	03.	96	. 60	0	9.0	10	100		. 50	020	101.5			102.8	14.1	130.2	130.4	110.3	90.1	40		N- 4	52.3	P		
				12	:	101	102	103	106	110	114	115	115	114	110	106	103	102.2			08.5	9.7	34.7	33.6	10.5	89.	• •	ä	8	50.4	4.	. 4	8
				.928	. V		~ (M 161		~ ~	100	u c	, O		$\sigma \sim$	∞ '		102.6	•		14.3	۔ و	40.2	38.3	1111.3	88.2	-27.2	m	• -	47.6	.	: :	•
		0		10	O MICRO	a	20	104.0	8	£ 8	22	25	25	122.2	75	00	S č	102.6	1		20.5		47.8	5.	14.	9.	• •	;	.	41.6	٦,	• •	
	:	* 90°0	z	9.751	DB RE 2	101.4	102.4	103.8	106.7	113.3	123.2	128.0	128.0	123.2	113.3	108.7	103.8	102.4		REES	127.3		158.9	158.6	127.5	9.26	-29.3		9 f	27.5	σ	- 4	•
ARANCE		EGREESI	LOCATIO	9.	ITUDE,	100.9	0	103.4	, 0		7 77	44 6	9 ru		7~	0	\circ	101.9	4	SE (DEG	134	-148.8	173.	178.	1,7. 166.	147.	120. -86.	55.	•	3.1 4	•	•	•
4 CLE	9652	C/L (D	_	.573	RE. AMPL	100.3	101.4	102.9	106.3	113,3	123.8	128.6	128.8	123.8	11303	106.3	104.8	101.4	E e dina	PHA	141	-157.7	12	9;	2 2	9	25	119	61	-28.7	\exists	1.4	• • •
Me 0.07		FUSELAGE OF FUSEL		684.	. PRESSU	99.66	0	AL -4	. ~	A a	123.1		-10		രവസ	•	40	100.6	אל		-148.3	-165.6	159.4	147.2	141.8	152.0	12121	-124.4	4.06-	-62.7	-25.6	-10.2	
4000 RPM	5	OP 10 D END		396	:	98.9	100.0	101.7	07.	112.2	-	•		10	• •	07.		100.0	•		153.	-171.3	152.8	141.2	139.4	151.6	172.2	=123.4	-90.8	-67-3	-30.7	-16.8	٠,
BL ADE S4	200.00	RON P FORWA	:	4.307	a comprehensive and	98.0	10	93	105.8	0 -	115.2	~ .		115.2	49	3	٠,	9 0	4	:	156	-174.4	150.4	139.8	135.2	153.6	175aB	120.7	-88.7	-64.7	-32-1	- 4	٠,
m	(HZ) •	L R C	3	3.219.		97.0	8	96	103.6	20	검으	1		• •	9 6	03.	÷ 0	98.0	\$:	~	~	151.0	141.3	137.5	157.0	170.6	117.	-85.	=61.7 -45.3	ģ	-18.5	:,
DIAMETER		ICAL A ICAL A LER. PL	•	2.130		95.0	96.8	98 • 1	ro	104.1	a	90	106.4	99	12	• •	•	96.8	.1	:	-156.	1	153.	144.	140.	166.	-177-	-113	-81.	-58 • 0 -41 • 8	-27	ŀ	•
	ATA LADES PM = GE FPE			1 .041	:	4.40	•	9.		•	3:	01	5	::	18	98.		95.4	3	:	-153.5	-170.6	157.8	149.1	146.0	166.3	-172.3	-107.6	-76.0	-52.6	-22.B	-11.8	,
PELLER	ELLER DE BELLER RELLER RE PASSA		<u> </u>	TION K	:	٥	70.0	60	•		20.0	00	0 9	70.00	d c	90	0,0		4		80.00					1	9300		00.0	: 0 0	00.0	00.0	0.0
<u> </u>	PROP PROP	252	וויי א פיי א	LOCATI	:	•			15 1	14 1	<u>سا</u> م	11 1	_			L	æ (n eu		:	19 1	18 1	1,91	151	14.	12 1		2 0	60	7	ی د	•	•1
	2												-	-19	- (,	•				1				!		:			!				٠

PROPELLER	BLADES	M DIAMETER	TER, 3 B		4000 PP	He 0.07										N/ C
PROPELLE	DATA BLADES			LADESA			9 0 0	AKANLE.								S.
NUMBER OF PROPELLER BLADE PASS	SAGE FRE	4000.0	HZ) •	2000					· · · · · · · · · · · · · · · · · · ·				:	-		PACE (
DISTANCE ANGLE 9E' DISTANCE	JE PROP	TICAL	ERCH O LIN NE FR	FORVAR	DP TO	FUSELAGE OF FUSEL	C/L (DE	GREES)	. 90.00	0			;			Y
PROPELLES	R HARMONIC	C 2 AT	0.004	Н2		:	:			:		1 1 1 1	:			
CIRCUMA	3				¥	4	AL	LOCATION	0	01	11	12		14	15	
L THETA	Z= .041	130	.219	307	396	465	573	- 1995 -	751	. 683	926	1.017	1,105	1.194	1.283	1.371
	:				!	PRESSU	RE AMPL	ITUDE.	DB RE 20	O MICRO	P V	*	:	ŧ	!	
·	75.	77	79.	81.0	2	e	85.6	3	4		~	8 5	_d	•	å,	•
170.	75.		6 0 0	82.1	e 4		65 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	86.4 0.6	88.1	86.5	85.9	84.8 8.6 8.6	83.4	81.8	79.8	77.6
1 000	75.	2 0	82.	85.2		89.1	69.6	0			9 60	9 6			8	•
140	76.	90	84.	68.1	-	m.	94.1	m (ë (21	9 4	80 0	;	61.5		74.1
136.	7.	200	960	92.0	ہ ف	• •	100.3	÷ .	104.1	~ ~	n œ	7 O	: 2		: 3	; -:
110.	2	3 E	88.	96.5	:	1:	114.7	=	2	8	02	46	9	•		
100	72.	80	88.	•	ġ	15.	121.3	17.	13	12	6	76	٠ د	•	: -	
906	72.	8	9	97.2	9 4		122.6	8 .	120.5	113.5	8 M	\$ 6 	'n		::	65.4
20.0	74.	3 2	88		•	=	114.7	=	12	8	0	46	•	•	÷.	8.
60	761	82	88	•	ð,	4	107.4	3	105.6	u ı	20 1 4	6	١,	•	á	4 (
20.	77.	85	98		÷-	9	1001	÷	9.60	- ~	, 0	. 6	•		: :	; ;
2 6	75.	2 6	82.	• •	; ;	, ,	89.8	; ;	90.0	•	•	98	3	•	•	ŝ
20.	75.	78	61.	•	Š	•	87.5	8	88.1	8.18	•	8	83.6	•	. .	76.7
2 10.00	75.7	78 77	80.1 79.3	82.1 81.0	83.6 82.5	84.9	85.8	o vri		85.6		2 4	83.1	81.8	• •	- 63
,							PHA	ASE (DEGR	REES)							
•		-	171	156.6	7	5.5	50.	49	171.6	78	73.	• • •	5.0	-145.5	•	20.
19 170.0	. 8			124.6	122.8		129.2	136.2	144.2	152.5		σ.		-171.6	-159.8	•
160.	1150	٦	90	90.8	₫.	•		-ar	117.0	_	4:	90	45	165.3		67
16 150.0	92.		77	5.00		52.4		79.9	99.7	13		: :	32.	138.5	47.	
130.		!	56	50.5		•	_	84.5	113.5	28	34.	36.	39.	143.2	6	20
120.	91.	:	73	67.6	÷ ,	•	_	109.2	151.5	.	9	166.	ຄໍເ	156.6		
110.	121.		104	6.86	•	•		4.091-	-127.9	96	9	22	3	-107.8	7	e
	-128.	7	'	-149.8	53.	•		-92.8	-31.0	29	•	Š.	6	-41.2	_	37
9 80	=65.	•!	-81.		90.	å c	_	31.5.	9.62	V		• -	• •	78.6		
6,0	-3.	•	-20-	17.3		15.1	23.	58.0	101.2	14	97	16.		116.7		28
, 50°0	6.69 00	58.8	51.1	45.1	42.1		53.9	79.1	108.0	123.0	128.8	131.4	34.	137.8	44	153.6
404	1 94	-	752	0 6 9	•	68.7	-	1985.	115.9	57 7		4 6	158.5	166.2		
30.	113.		93.	87.7	ຮູ້	. ,	•	8.801	0.221		7.541	.		1.004	•	-
20.	128.			104.0	•	3				,	7	57,	166.1	175.0	73	-160.9

FOR BLANDS - 3. FOR BLANDS - 4. FOR BL														RI F		•	
THE WERE LEG CALL AND LINE AND LAND LAND LAND LAND LAND LAND LAND	ROPELL	BLADES	3.		i i	!								GIN. Poc	:		
	BLADE PA	SAGE FREG	UE NC Y	(HZ) •	20000	;											
France F	DISTANCE.	TEEN LEGT	ٺ	SO I INF	EDON PE		SEI AG	707	DEGREE	96	00		2				
THE THE TAKENDRIC 3 AI. 600-0 HZ OTHER TO THE TAKENDRIC AND THE STATE OF THE TAKENDRIC AND THE TAKEND	DISTANCE	OF PROPEL	نە	INE FROM	. Lin	END	1SE	AGE CH		620					!	:	
CHIRGHA F. 1 2 3 4 4 5 6 773 662 771 130 11 12 13 14 15 15 13 13 13 13 14 15 15 16 17 1105 1104 1.283 1.3 13 15 16 17 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	600		3 AT		Н2		1	:	-			:	: 4,			i	
Continue	CIRCUM							X	LDCATI	_							
PRESSURE AMPLITUDE DR RE 20 MIGRO PA 110.00 56.9 66.2 66.0 67.8 66.0 67.8 69.1 70.1 70.3 68.9 68.0 67.0 65.1 64.1 64.1 70.1 70.2 66.1 65.2 65.1 66.1 65.2 65.0 67.8 69.2 70.2 70.2 70.2 70.2 70.2 70.2 70.2 70	LOCATION L THETA	K= 1 Z= .041	2 •13	3.219	30	5 6	6 5	7	•	9	83	1 92	12.	13		15	.37
100.00 55.7 66.1 65.2 65.6 65.8		•			!	•	SS	E AH	ITUDE	B RE	O MICR	•			đ	:	:
100.00 94.0 66.0 66.4 66.4 66.4 77.0 77.2 77.2 77.2 77.3 66.5 67.0 65.6 67.0	9	4			- 4	94	8	6	70.	70.3	6	- 4	•		6	ä	8
100.00 55.2 66.4 65.4 75.5 72.4 72.4 72.7 72.4 72.7 72.4 72.7 72.4 72.7	120] ~	6	65.9	9	67.	6		71.	7		•		•		•	~
100.00 57.2 60.1 67.2 70.1 71.2	160.	S.		63.5	40 0	69	: ,	å	72.	72	.	•		N 4	; :	; ;	7 N
100.00 53.6 60.7 67.1 77.1 60.7 67.2 67.5 68.5 68.5 68.5 68.5 68.5 77.4 68.5 77.5 68.5 77.7 71.8 69.5 77.5	150.	~	ب ا ا	0 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	30 C	75.	, «			- 8	; ;	• •		•	; ;		. 0
1 100.00	130.	1 K.	2.09	67.1	.	80	ŝ	:	86.	82	2.	•	-	SO 1	•	ë,	~
2 1100.00 (47.2 54.7 65.6 77.7 69.1 196.1 1130.6 1103.6 1103.1 100.1 100.4 100	3_120.	5	59 .5	67.4	7606	85.	2	96	75	93	đ.	•	ń.	a .	١.	á.	vo a
1 100.00	2 110.	•	•	66.5	7.77	80	6	9	6.	201	6	•	; ;	n –	: :	: :	9 0
## 100 154.2 14.7 15.0 17.8 19.1 19.1 19.2	1 100.	•	•	300	0.// c cc	.16	•		2 -	110		• •	'n	• ~	: :	: :	. ~
7000 77.5 57.2 66.5 77.7 60.1 90.2 105.6 101.2 102.4 95.7 85.4 74.2 65.3 55.9 95.9 95.0 95.0 95.0 95.0 95.0 95.0	900	.	•	45.0	77. B	0	70	-	10.	110	00		, (4)	•	: -	: :	2
7 60.00 51.6 19.5 17.4 16.6 18.4 92.6 96.2 18.2 18.2 18.2 17.5 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2	200	,		66.5	77.7		99	05.	03.	102	95	•	•	CD 1	•	•	
6 50.00 53.4 60.7 E7.1 76.1 B8.2 B8.3 78.4 B8.0 B8.0 B8.0 B8.0 B8.0 B8.0 B8.0 B8.0	60.	1			Theb	150	٦,	å,	٠	6	ď.	٠	.	~ 4	1 6	å ,	4 6
9 10.00 55.2 60.1 66.0 66.0 66.0 71.3 75.4 75.1 75.7 75.7 75.4 75.3 75.1 75.7 75.2 75.1 75.7 75.3 66.3 66.3 66.3 65.3 59.6 55.2 10.00 55.2 60.2 65.5 66.7 66.7 66.7 66.7 66.3 75.1 75.4 75.4 75.7 70.3 66.1 65.3 65.3 66.3 59.6 55.2 10.00 57.2 60.2 65.5 66.7 66.7 66.7 66.7 66.7 66.3 60.3 60.3 60.3 60.3 60.3 60.3 60.3	20.	י רש		£7.	74.1	90	'n.		•	20 6	,		- 6	~	•	, ,	- 0
9 180.00 56.3 60.2 65.5 66.7 69.4 71.3 72.4 72.9 72.7 71.9 70.3 68.1 65.3 62.5 59.6 53.3 60.3 57.0 56.3 10.0 56.3 60.2 67.8 69.5 70.6 71.2 71.3 70.7 69.6 67.9 69.6 67.8 69.5 70.6 71.2 71.3 70.7 69.6 67.9 69.6 67.8 69.5 70.6 71.2 71.3 70.7 69.6 67.8 69.5 70.6 71.2 70.3 69.6 67.8 69.5 70.6 71.2 70.3 69.6 67.8 69.5 70.6 71.2 70.3 69.6 67.8 69.5 70.6 71.2 70.3 69.6 67.8 69.5 70.6 71.2 70.3 69.6 70.5 70.3 70.3 60.3 70.3 70.3 70.3 70.3 70.3 70.3 70.3 7	9 6	n «	o c	602	6.0			,		7.				•	:		~
9 180.00 154.3 135.4 121.8 116.2 102.9 99.6 160.2 103.9 110.1 118.2 128.0 139.6 153.3 167.3 -174.7 -154 110.0 154.3 135.4 121.8 116.2 102.9 99.6 160.2 103.9 110.1 118.2 128.0 139.6 153.3 167.3 -174.7 -154 110.0 154.3 135.4 121.8 116.2 102.9 99.6 160.2 103.9 110.1 118.2 128.0 139.6 153.3 167.3 -174.7 -154 110.0 154.3 135.4 121.8 116.2 124.4 -26.0 52.5 -11.1 2.0 14.0 24.2 34.2 45.3 167.3 -174.7 -154 110.0 154.3 135.4 11.3 -24.4 -26.0 -22.5 -11.1 2.0 14.0 24.2 34.2 45.4 57.4 130.0 27.6 -11.3 -24.4 -26.0 -22.5 -11.1 2.0 14.0 24.2 34.2 45.4 57.4 130.0 27.6 -11.3 -25.5 -4.7 58.8 7.6 11.7 20.4 27.2 35.2 47.7 58.8 76 110.0 0 7.6 -11.3 -24.4 -26.0 -22.5 -11.1 7.0 14.0 24.2 34.2 45.4 57.4 58.8 76 110.0 0 7.6 11.3 -25.5 -54.4 -10.6 -12.1 -2.4 137.9 18.3 85.3 86.3 87.8 10.3 87.8 87.8 10.3 87.8 87.8 87.8 87.8 87.8 87.8 87.8 87	20.0	רטיר	0	63	9	69	: -	2		72	-	•	æ	3	2	•	5
PHASE (DEGREES) PHASE	10.0	. W	0	62.	47	67.	ċ	ċ	•	11	.	•	÷,	~ •	'n,	ċ,	~ •
9 180.00 154.3 135.4 121.8 116.2 102.9 99.6 160.2 103.9 110.1 118.2 128.0 139.6 153.3 167.3 -174.7 -154.8 170.0 109.4 90.0 76.0 64.1 56.8 54.0 55.5 60.6 68.0 77.0 87.3 90.1 112.7 126.6 144.4 164.8 170.0 109.4 90.0 76.0 64.1 56.8 54.0 55.5 60.6 68.0 77.0 87.3 90.1 112.7 126.6 144.4 164.8 170.0 109.4 90.0 76.0 64.1 56.8 54.0 55.5 60.6 68.0 77.0 87.3 90.1 112.7 126.6 144.4 164.8 166.0 120.0 120.0 120.2 121.2 121.2 121.3 -24.4 -26.0 -21.4 -26.7 -26.5 -21.4 -26.0 14.0 24.2 45.4 57.4 75.8 76.5 150.0 27.5 134.4 -25.3 -34.9 -40.5 -41.4 -34.2 -12.4 17.1 20.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2	0.0			62.	8 4 4 B	66.	æ	d	•	g	\$	3	4	ď	4	\$	9
9 180.00 154.3 135.4 121.8 116.2 102.9 99.6 160.2 103.9 110.1 118.2 128.0 139.6 153.3 167.3 -174.7 -154.8 110.00 109.4 90.0 76.0 64.1 56.8 54.0 55.5 60.6 68.0 77.0 87.3 99.1 112.7 126.6 144.4 164.5 164.8			÷					Ŧ	SE (0E	ES						٠	
8 170.00 109.4 90.0 76.0 64.1 56.8 56.0 68.0 77.0 87.2 18.6 170.0 170.0 170.0 170.0 170.0 24.2 34.2 57.7 18.0 27.2 34.2 57.7 73.6 92.1 170.0 24.2 34.2 57.2 35.2 44.7 58.8 76.0 47.2 11.0 24.2 13.2 46.7 26.2 11.0 24.2 13.2 46.7 26.2 11.0 24.2 13.2 46.7 26.2 13.2 10.2 26.2 11.0 26.2 13.2 10.2	_	154	35.	21	110	102.		100.2	103.	10	118.	28	:	53	67	; .	54.
150.00	-	109	ċ.	76.0	40.	56.		ก - กัก	• 09	.		- <	•	7 T	2 S	; 4	21.5
\$ 140.00 7.6 -11.3 -24.5 -35.3 -41.6 -42.7 -36.5 -21.4 -2.4 11.7 20.4 27.2 35.2 44.7 58.8 76. 4.130.00 4.2 -13.4 -25.3 -34.9 -40.5 -41.4 -34.2 -12.1 17.1 32.7 38.0 40.3 43.8 49.8 60.7 76. 4.130.00 4.2 -13.4 -25.3 -34.9 -40.5 -41.4 -34.2 -12.1 17.1 32.7 38.0 40.3 43.8 49.8 60.7 76. 3.120.00 2.9.5 13.4 -25.3 -34.9 -40.5 -41.4 -5.5 26.6 71.0 84.3 85.3 83.2 81.9 91.5 102. 2.110.00 7.6.8 61.6 52.0 44.4 39.2 36.5 40.5 83.7 142.0 142.4 137.9 136.1 138.6 147. 1.100.00 1.21.6 -133.1 -140.6 -147.1 -152.2 -155.9 -156.6 -98.8 -32.8 -31.9 -35.8 -41.0 -46.1 -48.7 -46.6 -37. 9.00.00 1.21.6 -133.1 -140.6 -147.1 -152.2 -155.9 -156.0 61.0 57.1 51.7 45.9 42.1 42.1 49.9	71	1	• •	-5.8	1-	-24.	-	-21.5	-	3 (~)	14.		:	45.4	_		92.
4 130 00 4.2 - 13.4 -25.3 - 34.9 -40.5 -41.4 - 34.2 - 12.1 17.1 32.7 38.0 40.3 43.8 49.8 60.7 76.3 120.00 29.5 13.4 2.9 -5.4 - 10.6 - 12.1 -5.5 26.6 71.0 84.3 85.3 83.2 81.9 83.6 90.5 102. 102.00 29.5 13.4 2.9 -5.4 - 10.6 - 12.1 -5.5 26.6 71.0 84.3 85.3 83.2 81.9 83.6 137.9 136.1 138.6 147.0 142.0 142.0 142.2 147.0 142.0 142.0 142.2 147.0 142.0 1	•		;	2	-35.		1-45.7	-36.5	-21.	\sim	11.	0		35.2	•	8	•
3 120.00 29.5 13.4 2.9 -5.4 -10.6 -12.1 -5.5 26.6 71.0 84.3 85.3 85.3 85.5 81.9 83.0 70.5 13.0 140.0 140.2 147.0 142.4 137.9 136.1 138.6 147.0 142.4 137.9 136.1 138.6 147.0 142.4 137.9 136.1 138.6 147.0 142.4 137.9 136.1 138.6 147.0 142.4 130.2 150.0 76.6 134.2 136.2 -132.4 -136.3 -141.7		4	Э,	-25.3	-34	•	-41.4	-34.2	-12.		32.	8	፥	43.0	ο,	•	96
76.00 76.8 61.6 52.0 44.4 39.2 36.2 40.5 110.0 1	_	. 29		2.9	. 5	•	-12.1		26.	;		ין מו	٠.		מאל	֓֞֜֜֜֜֝֓֜֜֝֓֓֓֓֜֜֜֜֜֓֓֓֓֓֜֜֜֜֓֓֡֓֡֓֜֜֜֓֓֡֓֡֓֡֓֡	77
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		76	÷.	52.0	77.	• 6 0	36.5	40.5	160	7 7	7 2 2	- ×	• •	- C	2 5	51.	3
9 80.00 -23.0 =36.4 -45.1 -52.4 =57.8 -61.5 -60.6 -61.2 -59.2 -61.0 57.1 51.7 45.9 42.1 42.1 139.9 135.3 130.8 128.9 131.5 139. 8 70.00 69.7 54.5 44.9 37.3 32.1 29.4 33.3 76.6 134.8 142.1 139.9 135.3 130.8 128.9 131.5 139. 7 60.00 134.0 117.9 107.4 99.1 94.0 92.4 99.0 131.1 175.5 -171.2 -172.2 -172.3 -173.6 -171.8 -165.0 -152.4 5 60.00 176.0 158.4 146.5 136.9 131.3 130.5 137.7 159.7 -171.0 -155.4 -150.1 -147.8 -144.4 -138.4 -127.4 -111. 7 60.00 -120.8 -140.5 -154.5 -166.1 -173.1 -174.7 -170.1 -159.8 -146.7 -134.7 -124.4 -114.5 -103.2 -91.3 -75.1 -56.3 3 20.00 -98.5 -118.3 -132.6 -144.5 -151.8 -154.0 -151.1 -143.9 -134.3 -108.3 -98.0 -56.3 -72.7 -58.8 -41.0 -20.0 -75.9 -95.3 -109.4 -121.2 -128.6 -131.4 -129.9 -117.3 -108.3 -98.0 -56.3 -72.7 -58.8 -41.0 -20.0 -75.9 -95.3 -72.7 -58.8 -74.0 -20.0 -75.9 -95.3 -72.7 -58.8 -72.0 -75.9 -7		-121	133.	32	141	152.	-155.9	-155.6	-98	32	-31.	35	: :	9	•	46.	37.
70.00 69.7 54.5 44.9 37.3 32.1 29.4 33.3 76.6 134.8 142.1 139.9 135.3 130.8 128.9 131.5 139.6 60.00 134.0 117.9 107.4 99.1 94.0 92.4 99.0 131.1 175.5 171.2 170.2 172.3 173.6 171.8 165.0 152.0 152.0 176.0 158.4 146.5 136.9 131.3 130.5 137.7 159.7 171.0 155.4 150.1 147.8 144.4 138.4 127.4 111.0 155.4 150.1 147.8 144.4 138.4 127.4 111.0 155.4 150.1 147.8 144.4 120.4 110.9 190.1 162.8 147.7 170.1 159.8 146.7 134.7 124.4 114.5 103.2 120.4 110.9 190.0 120.8 144.5 166.1 173.1 173.1 170.1 159.8 146.7 134.7 124.4 114.5 103.2 191.3 75.1 156.1 16.00 175.9 190.0 150.0 1	. 6	-23	36	5	52	57.	-61.5	-60.6		2	61.	57	_	45	7.	25	66
60.00 134.0 117.9 107.4 99.1 94.0 92.4 99.0 131.1 175.5 171.2 170.2 170.3 173.5 173.6 173.7 159.8 174.7 173.0 175.8 174.5 174.5 173.7 174.7 170.1 173.8 174.7 174.7 175.8 174.5 174.5 174.5 174.5 175.8 174.6 174.5 175.8 175.8 175.9 175.		69	•	44	7	•	4.62	33.3	76.	~;	142.	39	<u>.</u>	30	128.9	31.5	139.
56.00 176.0 158.4 146.5 136.9 131.3 130.5 151.7 157.0 159.4 159.4 159.4 150.4 144.5 150.4 144.5 150.4 150.5 150.4 150.4 150.4 150.4 150.4 150.4 150.4 150.4 150.4 150.4 150.4 150.4 150.4 150.5 150.4 150.4 150.5 150.4 150.4 150.5 150.4 150.5 150.4 150.5 150.4 150.5 150.4 150.5 150.4 150.5 150.4 150.5 150.4 150.5		134		0,	66	94.	4.26	0.66	131.	~ `	-171.	2 5		2 1	138.6	27.6	111.
40.60 -156.0 -160.5 -154.5 -166.1 -173.1 -174.7 -170.1 -159.8 -146.7 -134.7 -124.4 -114.5 -103.2 -91.3 -75.1 -56. 20.00 -98.5 -118.3 -132.6 -144.5 -151.8 -154.0 -151.1 -143.9 -134.3 -124.0 -113.4 -102.0 -89.0 -75.7 -58.4 -38. 10.00 -75.9 -95.3 -109.4 -121.2 -128.6 -131.4 -129.9 -124.8 -117.3 -108.3 -98.0 -66.3 -72.7 -58.8 -41.0 -20.	ည်	176	158.	3 6	36	91°	130.7	15101	-179	-171	-153	2 2 2 5	• •	202	110.9	96.	5
20.00 -98.5 -118.3 -132.6 -144.5 -151.8 -154.0 -151.1 -143.9 -134.3 -124.0 -113.4 -102.0 -89.0 -75.7 -58.4 -38. 10.00 -75.9 -95.3 -109.4 -121.2 -128.6 -131.4 -129.9 -124.8 -117.3 -108.3 -98.0 -£6.3 -72.7 -58.8 -41.0 -20.	96	-120	140.	154.5	9	173.	12	-	-159	-146.	34.	24		03	1.3	75.	56.
10.00 -75.9 -95.3 -109.4 -121.2 -128.6 -131.4 -129.9 -124.8 -117.3 -108.3 -98.0 -66.3 -72.7 -56.8 -41.0 -20.	20.	96-	118.	32.6	144	151.	Š	_	-143.	134.	124.	113	· .	68		58	38.
	10.	-75	95	0	121	128.	m	-	-124.	1117.	108.	98	å	2	~	;	202

; ; ;	
STIFFENED 0.032 IN CYLINDER, STIFFENED FLUOK AT 26.6 DEGKEES, KIBID JONCTION CAVITY 72 IN LONG. STRUCTURE 71 IN LONG TRIM PANEL, FIBERGLAS TYPE PE105 2.0 IN THICK + LINING = 1.46 KG/M2	PROPELLER, 0.76 M DIAMETER, 3 BLADES, 4000 RPM, 0.076 M CLEARANCE

PRESSURE HICRO PA	69	30		64		09	61	91	38
LER HARMEN HEAN SQ. F DB.RE 20 H	91.69	71.3	52.B	37.5	32.58	20.6	5.61	5.18	-11.38
INTERIOR MEAN SO. PRESSURE PA**2 DB RE 20 MICRO PA	5.8974E-01	5.3939E-03	7.6416F-05	2.2966F-06	7.2388E-07	4.5941£-08	14556E-09	1.31736-69	2.9091E-11
TONE TRANSMISSION EUR PRUPELLER EARDENICA INTERIOR MEAN SQ. PRES NO FRE 20 MICR	200.0	0.009	800.0	1000.0	1200.0	1400.0	1600.0		
HAR	: - ~	E	•	3	•	7	•	6	10

ORIGINAL PAGE IS

:	•	+ ACDUSTIC + 0 = NO.	STIC PO	PODESI OF AXIAL HA		S				
		+	ASSIGNED DR IN CYLINDER	4		2-DIMENSIONAL MODAL-SECTION	JAM	HODAL PATTERN	+	
		* + + +	STRUCTURAL M = NO. OF N = NO. OF	MODES: AXIAL HALF-WAVES CIRCUMFERENTIAL	LE-HAVE RENTIAL	ES WAVES	AKOL:	UND FUSELAGE	+ + + + + + + + + + + + + + + + + + +	
			ARGEST.	+ LARGEST SHELL GEN. COORDINATES FOR THIS	EN. COU	PRD ENA!	ES EI	OR THIS MODE		
	TONE	TRANSMISSION FOR	ION FO	P FREOLENCY		20C.0 HZ.		HARMONIC NO.		
,	ď	ACOUSTIC FREO	H00 E	S1 ON	STRUCTURAL G EREO	AL MODE	2	ETA RF M.	S.PRESSURE (PA**2)	
	eu re	187.6	2 0		502.2		⊶ m	.00000	1.5586E-02 1.8704E-02	
		187.6 187.6 187.6	200		301.9 168.5 206.2		~~~	.10685	8.5377E-G2 1.6350E-01 2.1463E-01	
÷	:		i			TOTAL		91.69 DB	5.8974E-01	
	TONE	TP ANSMISSION	STON FOR	R FREGLENCY		400.0 HZ.		HAPMONIC NO.	. 2	
-1	D.	ACOUSTIC FREO	H00E	S	STRUCTURAL NO FREO	AL MODE	z	ETA RF P.	S.PRESSURE (PA**2)	
97-	19	393.8	2	1	316.7	1	~	.00001	3.79946-04	
•	13	414.8	2 -	12	301.9		~ ~	00000	8.1627E-04 8.9625E-04	
:	19 1e	393.8 393.8	m m	2	626.0 346.7	7 - 13	ա ա՛		1.8668E-03 2.0118E=02	
i I	:		:	1		TOTAL		78.19 08	2.6351E-02	Or OF
	TONE	TRANSHISSION	SION FOR	R FREQUENCY		500.0 HZ		HARMONIC NO.	3	a ex
	Ž	ACGUSTIC FREQ	MODE	. Z	STRUCTURAL O FREO	AL MODE	z	ETA R# H	.S.PRESSURE	MIL (
	50				632.0		-	• 00003		UĄ
	1 5 7	572.3			646.7		4 4	00043	•	
	20	598.3	800	17	560.7	-7	6	.00012	6.6746E-04 7.4397E=04	
						TOTAL		71.30 DB	5.3939E-03	
	TONE	TRANSMISSION FOR FREQUENCY	ION FO	R FREGUE		420.0 HZ.		HARMONIC NO.		
:	Q.	ACPUSTIC EREQ	MODE 9 L	rs QN	STRUCTURAL 40 FREG	N HODE	z	ETA RF M.	S.PRESSURE	
	101	792.6 801.1	5 10	27 38	716.2 884.0 775.8	406	44 PD W	.00010	3.9431E=06 4.4401E=06 4.6114E=06	
			•				,			

	:				1		<u>;</u> '	;	:								ORIGIOF P	:
	PROPELLER	ERA O. 76 M	٩.	m	BLADESA	5000 RPMs	Ne 0 0 0 1	A M CLE	ARANCE				:				NAL OOR	
	NUMBER OF	BLADE	3.							t							P Q	
	BL ADE PAS	KPE	a > ′	(HZ) •	250.0			04.63			:						age Ual	
		TWEEN VER	٠, ١		FRCH PRO	10P TO F	FUSELAGE	C / V	EGREES)	. 90.0 6620	0						IS ITY	
	PROPELLER	R HARMONIC	1 AT	256.0	Н2			:										
	CIRCUM.							AXIAL	LOCATIO	Z								
:	LOCATION L THETA	K= 1 Z= .041	2 .130	3.219	.307	396	.485	.573	. 662	751	10 .639	11 .928	12 1.017	13 1.105	14 1,194	15	16.1	
:	•			!	1 .	*	PRESSU	URE AMPL	.ITUDE.	DB RE 20	O MICRO	A A	;					
	10 180.00	102.0	103.1	104.1	105.1	106.1	107.2	108.2	O1	11011	110.6	110.8	110.7	110.4	of	Ġ	108.1	
	170	102.	6	L 1	106.1	07.	108.1	60	01		=	-		110.9	10.	6	108.2	
	160.	103	105.3	106.4	107.6	168.5		3:	11	12.	12. 14.	14.	v m	1 I 1 2	!!	6	108.0	÷
	1 40	2	108.3		112.2			14.	15	16.	16	16.	1	13	12.	•	108.0	
	130.	00 108.0	111.0	113.5	116.1	118.2		6 6	119.3	0 4	6 4	6 %	6 C	115.9	ë,		109.0	
	110.	2	112.9	-				1.8	26	1 %	2	24.		17	14.	11.	0	
	100	108	112.0			26.	3	33	53	32	30.	26.	212	7.	13.	9	96	
-	от о	108	112.8	•	_	127.2	131.9	34.	29		30.	•	2 2	: :	13.	50	90	-
19	4 70.00		112.9		120.9	25.	120.1		. •	128.6) ~ ·	•	121.2		:::			
8-	50.	108	1112.4	113.	34 4 0	122.	119.3	j =	75	12	202	36.	18	15.	13.	::	96	
	0,5	105	E3	110.	112.2	113.	1,4	7	15	16.	16.	•	6	13.	12.	10.	•	
	30.0	104	106.5	108.	91	110	18	11.	12	113.6	114.0	14.	6 N	12.	101	0		
		102.	104-1	105.1	106.1	107.1	108.1	109.1	110.1	9	===	111.6	1111.4	110.9	110.3	109.3	108.2	
	9	102.		4871	1	• 0 1	3			•								
								PHA	SE (DEG	REES)								
!		-	17	-118.6	-117.6	-114.0	•	01.	6.46	88	~	75	99	19	~		36.	
	18 170.00	0 -135.2	-139.8	-141.7	-141.6	-137.4	-131.0	-122.9	-114.4	5.4	٥ ٦	-92.0 109.3	Λ Λί	-94.7	87.7	-61.9	.75	
	٦-	-175	12	17	171.9	174.1		99	151.7	38.6	28.5	120.6	5.0	106	7.66		82.	
		-	164.0		156.2		151.0	÷ 5	162.	42.0		125.b	70.6	77	7.6.		92.	
		166	160.4	12	149.3	-	. 6	=======================================	160.	126.6	13.8	109.2	6.3	102	98.8		85.	
1	12 116.00	-179	172.1	16	160.4	156.	•	50	•	8.8	-90.3	٠.	-87.5	-85.7	82.8		ċ	
	7	921-	-135.2	14-	-147.1	-151.4	4 ~	50.	-85.	32		28.5	10	28	26.7		16.	
	•	-96-	-103.3	91	=115.2	-119.	21.	17.	3	-	•	~ (~ <	2.6	~· ·		٠, د د	:
		Ý M	7.07-	-50.8	1 87.00				• •	9		2	9	52.0	6.1		: .:	:
!	: :	-17.	-25.6	-31.2	-35.3	-36	-31.7	16.	10.3	34.4	47.3	54.2	59.3	75.3	69.7	76.8	85.2	
	40,	14.	7.9	0.5	2.3	•	•	;		4		10	1	84.0	9.0		8	
		28	•				30.0	40.1		61.2	8-69	77.3	84.5	91.9	98.9		117.0	
	10.	43.	ъ Э	ć .	7.	0	٠,	5.	3.	1.	9.	9		1000	1.0		25.	•

-
-
1
-
3
3
2
₹.
I
۲
퍽
الم
7
4
ď
튑
긢
RPM
9
ă
4
•
2
ą
1
ब
-
2
ΞĮ.
Į.
7
q
Į
٦
7
đ
]
2
ΞĮ.
7
ũ
3
õ
٩

			•	.		
		1				
•						
		:				
					ANGLE BETWEEN VERTICAL AND LINE FROM PROP TO FUSELAGE C/L (DEGREES) = 90.00	DISTANCE OF BRODELLER BLANE FROM FORCARD FIND OF FLICE ARE LED . 6620
٠					S	9
!					REE	
		!			DEG	-
i				2	_	3
1		i		96	2	AGE
				Ī	AGE.	ISE
:	•	1		•	SEL	<u> </u>
:		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3	F	9
				7	=	Z
1		:	_	Ä	¥0,	Car
1		:	20.5	Ĭ	E	700
			7	EUSI	£ 6	1
				1	INE	FRO
			12	ER	7	L
:		0	= ≻	7	Ž	A
	m	5000.0	ENC	EP	CAL	F.R.
	=	20	EOU	EL	PTI	1
⋖	DES	•	3	RP	VE	P O P
PA	=	9	AGE	F	EEN	Q U
PROPELLER DATA	NIJMBER OF BLADES	PROPELLER PPH .	BLANE PASSAGE FREQUENCY (HZ) . 250.0	DISTANCE DE PROPELLEP C/L FROM FUSELAGE C/L (1) 9652	SET	n n
PELI	æ	PELI)E	LANC	u	LANC
PRO	Ī	PRO	BL A (1510	ANGL	1010
		-	_		-	
•						
				ł		

PROPELLER HARHONIC 2 AT 500.0 HZ

					1										K	OF	1	P()(?	€
	16.1		93.5	0.66	92.1	90.8	89.4	88.7	86.3	83.2	80.1	79.6	80.1	83.2	86.3	88.7	89.4	900	92.1	93.0	93.5	1
	15		95.3	95.0	94.5	93.6	95.8	92.7	6.06	88.3	85.6	85.0	85.6	88.3	90.9	92.7	95.8	93.6	94.5	95.0	95.3	
	14		96.9	6.96	96.7	6.96	96.1	96.6	95.5	93.6	91.4	91.0	4.16	93.6	95.5	96.6	96.1	96.3	7.96	96.9	6.96	
	13 1.105		98.0	98.3	98.4	98.4	98.9	1001	99.8	98.6	97.1	96.8	97.1	98.6	99.8	1001	6.86	98.4	98.4	98.3	98.0	
	1.017		99.0	99.5	100.0	100.5	101.7	103.7	164.6	104.6	104.1	103.9	104.1	104.6	104.6	103.7	101.7	100.5	100.0	99.5	0.00	
	11.	4	9886	100.3	101.1	102.0	103.9	106.9	109.0	110.7	1111.7	111.8	1111.7	110.7	109.0	106.9	103.9	102.0	101.1	100.3	4.00	
	10	O MICRO	99.8	100.6	101.6	102.8	105.3	109.0	112.6	116.3	119.3	119.9	119.3	116.3	112.6	109.0	105.3	102.8	101.6	100.6	900	
2	122	DB RE 2	99.4	100.3	101.5	102.9	105.6	109.7	11411	119.4	124.9	126.0	124.9	119.4	115.1	109.7	105.6	102.9	101.5	100.3	7.00	
DCATIO	. 662	TTUDE,	98.7	99.66	100.8	102.2	105.2	109.5	113.9	110.5	123.1	124.1	123.1	118.5	113.9	109.5	105.2	102.2	100.8	90.66	98.7	
AXIAL	.573	RE AMPL	97.6	98.4	99.7	101.3	104.5	109.4	115.9	121.0	126.8	128.0	126.8	121.0	114.9	109.4	104.5	101.3	69.7	98.4	97.6	
	6 485	PRESSURE	96.2	97.1	98.4	100.2	103.5	108.5	113.5	118.0	121.6	122.2	121.6	118.0	113.4	108.5	103.5	100.2	98.4	97.1	04.2	
		:	94.8	95.7	97.0	98.7	101.7	105.9	109.5	112.1	113.7	113.9	113.7	112.1	109.5	105.9	101.7	98.7	97.0	95.7	8 - 70	
	.307		93.3	94.2	95.4	96.8	99.1	102.3	105.5	165.3	105.4	105.4	105.4	105.3	104.5	102.3	99.1	96.8	95.4	94.2	03.3	
	3.219	!	91.6	92.5	93.4	94.3	95.8	98.1	98.9	98.5	97.t	4.16	97.6	98.5	98.9	98.1	95.B	94.3	93.4	92.5	9.10	
	130	:	4.06	606	91.5	616	92.7	94.1	93.9	92.7	91.1	1.06	91.1	92.7	93.9	94.1	92.7	91.9	91.5	6.06	7.00	
	041	:	88.6	688	69.1	89.0	69.0	89.6	68.6	96.6	84.3	83.9	84.3	86.6	88.6	9.68	69.0	89.0	89.1	88.9	AB. A	
CIRCUMA	LOCATION K		19 180.00	18 170.00	17 160.00	16 150.00	15 140.00	14 130.00	13 120 00	12 110.00	11 100.00	0 [σ	0.02	7	4 50°00	5 40.00	4 30.00	3 20.00	2 10.00	00.00	
				l i						í												i

PHASE (DEGREES)

() [0]	, 19- , 7 , re (1)	7	•								!					- ,			
	-16.0	-50.1	-87.9	-116.2	-135.2	-143.1	-132.1	-106.1	=64.5	80	4049	129.2	177.6	-148.5	-119.0	-95.3	-74.8	-54.5	-45.9
	-35.2	-70.3	-108.0	-136.5	_	_	_	_	1	-16.0	41.4	111.3	158.7	-168.2	-139.2	-115.6	6.46-	-73.9	-62.1
	-52.3	-87.9	-126.0	-154.5	-173.1	-179.5	-166.3	-137.7	-93.B	-28.1	35.1	91.6	143.4	175.0	=156.8	-133.6	-112.8	-91.5	-79.2
	-65.9	-101-9	-140.2	-168.6	173.4	168.1	-176.7	-146.0	-1004	-34.4	28.5	89.2	133.0	162.7	-170.3	-147.7	-127.0	-105.4	-92.8
		•	- 1					•	٦,	-36.7					- 1	•	•	•	-
	-90.5	-127.3	-166.3	165.5	149.2	147.8	169.6	-152.8	-102.2	-35.3	26.7	82.5	119.3	142.3	165.4	-173.6	-153.2	-130.9	-117.3
			1						- 1	-32.8	1		- 1		- 1				
		'					_	•	_']	-34.4	- }		•		١		٠	•	1
	•	•							"	-93.4	1						,	ŧ	ì
•	•	1							-	-152.0	1							ŧ	1
		•							i	-152,6							161.6	-168.5	=149.5
		,			82.3	69.1				-148.1	=84.7	-21.2	27.2	63.6	98.5	130.1	160.1	-169.7	-150.2
'	-120.4	_	150.9	114.4	88.7			111.6		1	- :				105.0	135.3		-166.4	-147.3
	-113,3	1	160.2	125.0	100.4	88.9	97.8	123.3	165.2	ı				A3.4	116.7		173.3	1	-140.2
	3 -103.5		172.3	138.3	114.5	103.2	1111.9		178.2	1		12.1	61.6	97.8	130.6	159.1	-174.6	-147.6	-130.4
	-86.6	-127.9	-170.3	156.6	133,9	122.9	131.	155.9	-163.	-98.5	=34.5	31.1	81.1	117.5	150.1	177.7	-157.2	-131.5	-115.5
	1 90.00	170.00	160.00	150.00	140.00	130.00	120.00	110.00	100.00	90.00	80.00	70.00	00.09	. 50.00	40.00	30.00	20.00	10.00	00.0
	10	19	17	16	<u> </u>	. 14	13	12	11	10	6	Œ	L .	£	6	7	•	~ :	-
							i				- [į						

		ļ					
rg Pi	37	4 9 1 3 6 4	******	646 WH B	9.75	8 7 7 7 7 7	116.3 -147.2 -73.3 -20.5 -25.5 -95.3
	5 0	001040	4.0.4.4	40.004	23.177.1	179.9 149.7 136.6 152.0 169.4	176.5 1103.4 -51.6 -51.6 31.4
	* -	W01001	M 9 9 9 9 9	P 3 7 1 0 0		m - 6 - 6 -	28.5 65.9 665.9 728.3 3.6 3.6
		10 10 4 4 4 N	6666	****	69. 24.	90.	1 1 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8 4 4 4 8 8	7 4 8 6 8 6	-88.7	109.8 80.9 72.3 96.3	1497051491
	92	660-44	327734	4-0004	104.	92. 58. 58.	51. 67. 67. 26.
	10 • 839 MICRO	00440	4 co co co 4 c	~ 4 4 0 0 0	117.	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	- 173.6 - 173.6 - 173.6 - 141.7 - 105.9 - 37.2
90.00	6 × 8	922	10.2 16.9 16.9 10.2 03.9	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ES1 26.9 -	36.0	-37.1 256.5 128.6 172.7 - 157.4 - -84.7
•0 22	8 662. DE, D	992.2 95.2 99.8 99.8	111.1 117.3 117.3 117.3	0 5 0 0 0 0 d	10EGR 33.1 - 66.8	18.7 7.7 32.3 84.1	7-400004
// (0 E (N) XIAL	7 .573 AMPL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13.1 20.1 20.1 20.1 13.1 05.8	844864	PHAS 36.3 -	1 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	153.1 28.0 109.2 160.8 1106.1 -64.8
EL AGE FUSELA	.465 RESSUR	986.1 93.0 97.6	07.8 112.3 111.6 07.8	93	35.7 -	15.6	40.00
TD FU	9 6	7.00	99.2 00.3 00.3 99.2	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30.6 - 67.0	20-0-0	11
ORUARO	3 0		8 6 6 6 6 6	2 4 m m 4	19.9 -	22.2 22.2 21.2 62.2	255.0 255.0 255.0 255.0 255.0 255.0 255.0
3.5	23	044060	08780	604400	03.4	43.7 43.7 41.4 80.6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
124	25	4			83 - 8 - 1 43 - 8 - 1	64.6 64.6 64.6 64.6	66 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	-0		40004	-200000	56.7	34.4 00.3 84.0 96.8	266.6 266.6 366.7 366.7 16.3
ER H	IA Z=				00		900000000000000000000000000000000000000
STA STA DPE	L'OCATI L'THE		110087	24601	18	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	11 100 10 90 10 90 8 70 8 70 7 60 6 50 6 50 6 30
			-20	0 -			
	STANCE DE PROPELLER CAL FROM ELSELAGE CAL LA)	STANCE DE PROPELLER CAL FRUM ELSELAGE CAL LANGE	STANCE DE PROPELLER CAL FROM PROP TO FUSELAGE CAL (DEGREES) = 90.00 STANCE DE PROPELLER LAND FROM PROP TO FUSELAGE (M) =	PREPETLER HARMENIC 3 AT 750.0 HZ ANIAL INCATION K 1 1 2 3 4 5 6 6 7 8 8 10 11 12 13 14 15 16 LICATION K 2 1 2 3 4 5 6 7 3 662 .773 .662 .751 .839 .928 1.017 1.105 1.194 1.283 1.37 LICATION K 2 1 2 3 4 5 6 7 3 6 6 7 7 8 8 9 8 1.017 1.105 1.194 1.283 1.37 LICATION K 3 1 2 3 4 6 6 7 7 8 8 9 8 1.017 1.105 1.194 1.283 1.37 LICATION K 3 1 2 3 4 6 6 7 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	THETA LE RETUER VARITICA AND LINE FROM PROP TO FUSE LAGE (N)6620 STANCE OF PROPELLER PLANE FROM FORLARD END OF FUSE LAGE (N)6620 STANCE OF PROPELLER PLANE FROM FORLARD END OF FUSE LAGE (N)6620 STANCE OF PROPELLER PLANE FROM FORLARD END OF FUSE LAGE (N)6620 STANCE OF PROPELLER PLANE FROM FORLARD END OF FUSE LAGE (N)6620 CATION Ke. 1 20 37 596 657 596 577 662 773 662 775 189 189 189 189 189 189 189 189 189 189	PRESENCE HERMONIC 3 AT 750.0 HZ RESIDENCE HERMONIC 3 AT 750.0 HZ RESIDEN	The properties of the property of the proper

ORIGINAL PAGE IS

NASA LANGLEY SCALE MODEL FUSELAGF WITH FLOOR STIFFENED 0.032 IN CYLINDER, STIFFENED FLOOR AT 56.6 DEGREES, RIGID JUNCTION CAVITY 72 IN LONG, STRUCTURE 71 IN LONG TRIM PANEL, FIBERGLAS TYPE PFIO? 2.0 IN THICK + LINING * 1.46 KG/M2.

THAF TRANSMISSION AT FREQUENCIES AT OR ABRIVE 1250.0 HZ IS WITH HIGH FREQUENCY FORMULATION PROPELLER, 0.76 M DIAMFTER, 3 BLADES, 5000 RPM, C.076 M CLEARANCE

INTERIOR MEAN SO. PRESSURE PA++2 DB RE 2C MICRO PA TONE TRANSMISSION FOR PROPELLER HARMONICS. 91-06-37 56-53 56-53 33-06 14-28 8-29 4.16 2.6961F-09 5.0761E-09 1.4923E-02 1.8005E-04 1.7319F-01 5.1079E-01 8.0997E-07 1.0712E-08 1.0425E-09 9.50636-11 250.0 750.0 1000.0 1250.0 1500.0 2250.0 2000s 2500.0 HARMONIC No FREO

					ORIG OF F	iINAL POOR	PAGE QUAL	: 19 .ITY									
			•PRESSURE (PA*+21	1732E-02 4242E-02 6509E-02	.3474t-02 .4398E-02 .7319E-01		.PRESSURE (PA++2)	7.3100E-03 1.1707E-02 2.4621E-02	.3187E-01	5.10796-01	3	(PA++2)	4648E	4788E-03 2717E-03 4074E-03	4923E=02		000000000000000000000000000000000000000
NO. OF AXIAL HALF-WAVES ASSIGNED ORDER OF 2-DIMENSIONAL HODAL PATTERN IN CYLINDER CROSS-SECTION	STRICTURAL MODES: M = NO. CF AXIAL HALF-WAVES N = NO. OF CIRCUMFERENTIAL WAVES AROUND FUSELAGE FOR LARGEST SHELL GEN. COORDINATES FOR THIS MODE +++++++++++++++++++++++++++++++++++	FREQUENCY 250.0 HZ. HARMONIC NO. 1	STRUCTURAL MODE ETA R# M.S.PR	231.0 2 4 .00053 1. 231.0 2 4 .04073 1. 231.0 2 4 .00335 1.	1 2 .01324 2. 1 2 .00729 3.	500.0 HZ. HARMONIC NO. 2	STRLCTURAL MODE ETA RF M.S.PR	.00004	556.4 2 3 .00359 1 470.5 2 3 .00001 2	TOTAL # 91.06 DR 5.1	FREQUENCY 750.0 HZ. HARMONIC NO. 3	TO THE TAX A STATE OF T	884.0 2 5 .00000 6.	28 717.3 2 2 .00001 1.4 30 761.9 3 4 .00013 2.2 35 855.4 5 4 .00011 2.4	IDTAL . 75.72 DB 1.	FREQUENCY 1000.0 HZ. HARMONIC NO. 4	
+ ACOUSTIC MODEST + C = NO. OF AXIA + I = ASSIGNED OR + IN CYLINDER	+ \$TRICTURAL MODESS + M = NO, CF AXIA + N = NO, OF CIRCUM + LARGEST SHELL	TONE TRANSMISSION FOR FR	ACDUSTIC HODE NO ERED 9 I	414.8 254.8 281.3	0 302.2 2 2 9 271.2 2 1	TONE TRANSMISSION FOR FR	ACOUSTIC HODE NO FREG O I	30 508.2 5 1 32 510.5 4 3 50 507.1 1 6	507.1 1		SION FOR	ACOUSTIC MODE	744.6 2 755.9 1	01 756.9 3 12 84 744.6 2 13 87 751.6 6 6		TONE TRANSMISSION FOR FR	•

Appendix C

MODAL CHARACTERISTICS

- . Business Aircraft
- . Small Body Aircraft
- . Narrow Body Aircraft

	SYMMETRIC		-	0.33	6.27			0.33	OF OF	S F) ()	(AL	. F	PA(GE Al	IT'							j- -	
UT ON MRPSM4		n n		0.33	0.84			0.33									-						36 10 T	
YMMETRIC MODES OUTP	RIGID	0 14 1 0		7.240E+10	4.54	1.756E+4		7.240E+10	13.66	7.48E+4													20	
MERLIN IUC STRUCTURE SYMMETRIC MODES OUTPUT ON MRPSMA END INPUT DATA	GENERAL FREELY SUPPORTED	50.0 1 10 1	SHELL T	7.240E+10	0.00164		FLATE	7.240E+10	0.00151	1.576+5		GENERATE MATRICES	CONSTRAINT	SHELL	FLATE	END	SOLVE	FUNCH	FREQUENCIES	EIGENVECTORS	20	MODE SHAPES	TRAN	END OF JOE

IMPUT DATA GENERAL			
FREELY SUPPORTED 50.0	RIGID		ANTISYMMETRIC
1 10 1	0 14 1 0	. T	
SHELL		•	
7.240E+10	7.240E+10	0.33	0.33
0.00164	4.54	0.84	9.27
2.712E+3	1.756E+4		
PL ATE			
	7.240E+10	0.33	0.33
0.00151	13.66		
	7.48E+4		
END			
GENERATE MATRICES			
CONSTRAINT			OE OE
CI ATE			
			ina Oo
SOL VE			L R
FUNCH			PA QU
FREQUENCIES			G
EIGENVECTORS			4
20			
MODE SHAPES			
TRAN	20	36 10 T	

ORIGINAL PAGE OF POOR QUALI POOR QUALITY SYMMETRIC 0.33 0.33 SMALL DIAMETER NO. 1 STRUCTURE SYMMETRIC MODES OUTFUT ON MRPSM3 0.33 0.33 17 20 0 RIGID 00 7.240E+10 7.240E+10 4.362E+4 19.68 4.362E+4 14 ¢ FREELY SUPPORTED 7.240E+10 0.00193 62.6 1.8926+3 7.240E+10 1.8926+3 0.00191 GENERATE MATRICES E.I.GENVECTORS REGIENCIES MODE SHAPES INFUT DATA END OF JOB CONSTRAINT GENERAL SHELL PLATE SHELL PLATE SOL VE FUNCH TEAN EXE END

FREELY SUPPORTED RIGID 1	FREELY SUPPORTED RIGID 1 10 1 0 14 1 0 5 1 1 10 1 0 14 1 0 5 1 1 240E+10 7.240E+10 0.33 0.00193 5.34 1.145 1.892E+3 4.362E+4 FE 7.240E+10 7.240E+10 0.33 0.00191 19.68 STRAINT L L L L L L L L L L L L L	REELY SUPPORTED 62.6	RIGID		
1 10 62.6 1 10 1 0 14 1 0 5 1 1	1 10 1 10 5 1 1 10 1 1 0 5 1 1 7.240E+10 7.240E+10 0.33 0.00193 5.34 1.145 1.892E+3 4.362E+4 I.892E+3 4.362E+4 ERATE MATRICES STRAINT L L L L J J J J J J J J J	10 1 0			ANTISYMMETRIC
L 7.240E+10 7.240E+10 0.33 0.33 0.00193 5.34 1.145 13.0 1.892E+3 4.362E+4 I.892E+3 4.362E+4 I.892E+4 4.362E+4 I.892E+3 4.362E+4 I.892E+4 4.362	L 7.240E+10 7.240E+10 0.33 0.00193 5.34 1.145 1.892E+3 4.362E+4 IE 7.240E+10 7.240E+10 0.33 0.00191 19.68 STRAINT L IE 7.240E+10 7.240E+10 0.33 I.892E+3 4.362E+4	:	1 0	5 1	
L. 7.240E+10 7.240E+10 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.	L. 7.240E+10 7.240E+10 0.33 0.00193 5.34 1.145 1.892E+3 4.362E+4 IE 7.240E+10 7.240E+10 0.33 0.00191 19.68 I.892E+3 4.362E+4 IRATE MATRICES STRAINT I.	-			
7.240E+10 7.240E+10 0.33 0.33 0.00193 5.34 1.145 13.0 1.892E+3 4.362E+4 1.892E+3 4.362E+4 1.892E+3 4.362E+4 I.892E+3 4.362E+4 I.892E+10 7.34	7.240E+10 7.240E+10 0.33 0.00193 5.34 1.145 1.892E+3 4.362E+4 ERATE MATRICES STRAINT L I.B92E+3 4.362E+4 I.B92E+5 4.362E+4				
0.00193 5.34 1.145 13.0 1.1892E+3 4.362E+4 1.892E+3 4.362E+4 0.033 0.33 0.03191 19.68 19.68 1.892E+3 4.362E+4 1.892E+4 1.892E+4 1.892E+4 1.892E+4 1.892E+4 1.892E+4 1.892E+4 1.892E+4 1.892E+4 1	0.00193		0	0.33	0.33
1.892E+3	TE		4	1.145	13.0
FE	FE		4		
7.240E+10 7.240E+10 0.33 0.33 0.00191 19.48 1.892E+3 4.362E+4 STRAINT L IE NIENCIES SHAFES 20 36 10 T T	7.240E+10 7.240E+10 0.33 0.00191 19.68 1.892E+3 4.362E+4 ERATE MATRICES STRAINT L IE				
### 1.892E+3 4.362E+4 ###################################	1.892E+3 ERATE MATRICES STRAINT L IE CE CH SH	7.240E+10	Ca	0.33	0.33
ERATE MATRICES L L IL I	STRAINT L TE TE SH SH SH		4		
ERATE MATRICES STRAINT L TE TE TH	GENERATE MATRICES CONSTRAINT SHELL SHELL ENT ENT SOLVE FUNCH				
SAINT ENCIES JECTORS 20 SHAPES 20 36 10 T T	CONSTRAINT SHELL PLATE ENTO SOLVE PUNCH FERFOLENCTES	RATE MATRICES			
ENCIES JECTORS 20 SHAPES 20 36 10 T T	SHELL PLATE ENI SOLVE PUNCH FREDIENCTES	TRAINT			
ENCIES JECTORS 20 SHAPES 20 36 10 T T	PLATE END SOLVE PUNCH FURCH				
ENCTES DECTORS 20 3HAPES 20 36 10 T T	ENIO SOLVE PUNCH FREDIENCTES	ш			
ENCTES JECTORS 20 SHAPES 20 30 7 T	SOLVE PUNCH FREDIENCTES				OF
ENCIES JECTORS 20 SHAPES 20 36 10 T T	FUNCH FREDIENCIES	14			P
ENCIES JECTORS 20 SHAPES 20 36 10 T T	SEL CALIFOLD				O
NOECTORS 20 SHAPES 20 36 10 T T		UENCIES			OR
20 SHAPES 20 36 10 T T	ETGENVECTORS	NUECTORS			Ç
SHAPES 20 36 10 T T	0.70	20			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20 36. 10 T T	SHAPES	SHAPES			
	N 20 36 10		50	1	—

AL. FREELY SUPPORTED ANTISYMMETRIC 1 10 14 1 0 5 · 1 1 10 1 1 0 14 1 0 5 · 1 1 10 1 1 0 14 1 0 5 · 1 1 10 1 1 0 14 1 0 5 · 1 1 27.240E+10	INFUT DATA					
10 14 1 0 5 · 1 T F · · · 0 .33 0 .33 7.240E+10 7.240E+10 0.33 0.33 0.00243 6.73 1.875 23.0 1.271E+4 1.118E+5 0.33 0.33 0.00283 23.64 1.271E+4 6.98E+5 ATRICES S S S 10 T T	IY SIIPPORTED	ř	IGID			ANTISYMMETRI
10 1 0 14 1 0 5 1 T F	73.7					
7.240E+10	10		0	5 . 1		
7.240E+10 7.240E+10 0.33 0.33 0.00243 6.73 1.875 23.0 1.271E+4 1.118E+5 23.64 0.00283 23.64 1.271E+4 6.98E+5 ATRICES 8 5 20 36 10 T T	- -	•				
7.240E+10 7.240E+10 0.33 0.33 0.00243 6.73 1.875 23.0 1.271E+4 1.118E+5 23.0 7.240E+10 7.240E+10 0.33 0.33 0.00283 23.64 1.271E+4 6.98E+5 ATRICES S S S S S S S S S S S S S S S S S S						
0.00243 6.73 1.875 23.0 1.271E+4 1.118E+5 7.240E+10 7.240E+10 0.33 0.33 0.00283 23.64 1.271E+4 6.98E+5 ATRICES 8 5 8 8	7.240E+10	7.240E+10		0.33	0.33	-
1.271E+4 1.118E+5 7.240E+10 0.33 0.33 0.00283 23.64 1.271E+4 6.98E+5 ATRICES S S S S S S S S S S S S S S S S S S	0.00243	6.73		1.875	23.0	
7.240E+10 7.240E+10 0.33 0.33 0.00283 23.64 1.271E+4 6.98E+5 ATRICES 8 8 8 20 36 10 T T	1.271E+4	1.1186+5				
7.240E+10 7.240E+10 0.33 0.33 0.00283 23.64 1.271E+4 6.98E+5 ATRICES S S S S S S S S S S S S S S S S S S						
0.00283 23.64 1.271E+4 6.98E+5 ATRICES S RS S 23.64 6.98E+5 ATRICES ATRICES S S S S S S S S S S S S S S S S S S	7.240E+10	7.240E+10		0.33	0.33	
1.271E+4 6.98E+5 ATRICES S RS S 20 36 10 T T	0.00283	23.64				
ATRICES S KS S ZO 36 10 T T	1.2716+4	6.98E+5)Ri
ATRICES S RS S 20 36 10 T T						IGI P
S RS 20 36 10 T T	GENERATE MATRICES					N#
S RS S 20 36 10 T T	NT					IL IR
5 RS RS S 20 36 10 T T						Qi
S RS S 20 36 10 T T	:					J A
S RS S 10 T T						Lľ
S S 20 36 10 T T		!				TY
F.S. 20 3.6						
RS 8 20 36	FREQUENCIES					
5 20 36	EIGENVECTORS					
20 36	20					A THE STREET OF
20 36	FES					
			20		—	
SION STATE OF THE PROPERTY OF						
	AOE B		!			

0				
10 1 0 T F 7.240E+10	RIGID		SYMMETRIC	rric
7 F 7.240E+10	1 4	i i		
	4	4		
	.240E+10	0.33	0.33	
0.00%43	6.73	1.875	23.0	
1.271E+4	1.118E+5			
7.240E+10 7.	7.240E+10	0.33	0.33	
	23.64			
	6.98E+5			
GENERATE MATRICES				
CONSTRAINT			the designation of the state of	!
				OR OF
The delicity of the second of				P
				IN O(
				AL DR
				Q
FREQUENCIES		A CHARLES AND) ارا ارا
EIGENVECTORS				RE VLI
20				17
MOIJE SHAPES				1
	20	36 10		
LIZ.				

ORIGINAL PAGE & OF POOR QUALITY

MERLIN	IVC
15	6
10	
5	3
50.0	
9.27	0.84
4.54	13.66
TAPE 7	SYMMETRIC MODES
TAPE 8	ANTISYMMETRIC MODES .

SMALL	DIAMETER	NO. 1
15_	6	
10		
5_	3	
62.6		
13.0	1.145	•
5.34	19.68	
TAPE 7	SYMMETRIC	C MODES
TAPE 8	ANTISYMME	TRIC MODES

NARROW BODY
15 6
10
5 3
73.7
23.0 1.875
6.73 23.64
TAPE 7 SYMMETRIC MODES
TAPE 8 ANTISYMMETRIC MODES

NO OF MODES FIRE

FREGUENCY (HZ)

MODAL ENFORMATION

					1								•					: : : : : :
																		· · · ·
0+		-	14	53	30	29	19	II.	28	0	•	0		0	•	P	0	9
n 0 -	-	-	•	57	5 2	57	66	140	M	0	•	0	0	0	9	0	0	•
0 %	•	c e	11	27	39	93	T.	105	141	691	215	273	331	367	•	0	•	0
-02	~ •	9 6	0	2	•	•	•	9	•	9	•	æ	•	•	0	0	•	Q
00	0	00	0	0	0	0	. 0	0	0	0	0	0	•	0	0	0	0	0
50.0	90.	125.	160.	200.	250.	315.	•00•	500.	630.	600	1000.	1250.	1600.	2000.	2500.	3150.	4000	5000.
									-	2	1	1 -	-		•			

ORIGINAL PAGE OF POOR QUALITY

															(
)R)F	
	!										:	1		•	IGI P	1
	ŀ	•													NA' 00'	
															L R	
	ACOUSTIC	l	HODE S.												PA QU	
	MODE	FPEO	9		!	1055	NO 11543	A STATE OF THE STA		•			* 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N.	ge Al	
-	2	2	y: 13 > 13 > 13	3 K		FACTOR	7767								!! !T	
	→ ~	22.13	NAN	o -) -	00000	1.9345	E+00			•	_			g Y	
		1.2	PHYS	. 2		19425	1.9345	90+								
	•	• (SYAH	æ	0	.07716	1,9345	00+	; 	:	 : ::					
	س	69	SYR	• :	-	.03574	1.9345	00+			•	_				
		9	N N N N	5		61910	0 9 8 6 9 E	004			:	!				
	- 6	17.0	7 T Z	-		02057	4.9780	E+00								
		23.8	IANT			09810	4.9780	00+30								
	10	~	SYMM	•		.01043	1.934	00+								:
	=:	en u	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	m (•	.01604	4.9780E	•		,						
	71	١		> -	-	01010	301117								:	
	2 -	- ^	TEAS	- ~		04809	6.5539	00+				`				
	15	1100	ANT	-		6	4.9780	. 00+								
	9	_	SYAA	m		0	6.5539	00+					i		į	!
- 2	17	4	SYNA	~		.03130	1.9345	00+	363	•	SA		000	.5947E+		
21	8		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	•		04240	4.9780	00+	304			-		2405640		-
2-	2 5	175.04	1 1 1 N	F. 16	۰ ۸	26160	P. C.	00+	386		SYAR			3714E		
•	21	110	ANT			0	9780	00+	387			5	007	.2510E+0		
	22	77.0	SYMH	€.		8	1.9345	000	300	-		6	900	.5125E+U		:
	(C)	8 . 6 W	N X X	9	~		5.5539	00+	389		S (-	005	.59476+0		
	.	69.69	ANTI	~		5 X	08/6.1	000	390			7		03714640		
		, 0	ANT	•		.04787	7504	000	392		e W		007	.2510E+		
	-		ANTI	-		041	5008	00+	393		~	-	002	. 5947E+0		
	~		ILINA	~	(4)	79		00+	394		"	— ;	010	. 3714E+	1	
	.	•		~ r	N	000	33 14 50 0 14	000	204	•	< <i>v</i>	- - -		9510640		
		311.112	ANT	0		66640		00+3	397	642.24	SYNT	10 11	. 00495	1.59476+01		
	~		SYNA	0		.06708	3.7039	000	398	- 4	~	-	6	. 3714E+0	a consumption and	The second secon
	ļ		HHA	٠,	٠.	E 99	7.4077	00+	366	•	1 2 2	→ •	8	.2510E+		
	- 1	219.07	NAME OF THE PERSON OF THE PERS	7	- I	16000	7.407.1) •		- 4	2	-	5	1016	And the second s	1
	0 49 0 49		T X X	10	• •	386	3456	•								
	1	3.0	SVHA		~	0495	. 5539	9	:							
		24.5	SYMM	•	•	.06446	4017	9								
		•		5	, FT	•	9 6	9 9								
	i	20.0		7		22000	7 V F		•			٠				:
•		40.3	LLNY	•	• 60	9040	000	•								
	İ	6:0	SYAG	6	2	-	6.5539	2	:		•	•				
	-	241.40	SYMM	2	•	.05579	7.4077E	+00	*****					,		
	15	63	CVHM		0	.03361	1.93455+00	00+								

ORIGINAL	PARE
OF POOR	QUAL

SY	.2744	1	. 7309	0 .8908	7.8	9	20	.4003E-
2	1429. 1	1	919	1511. 1	9.6	9	E.	. 0546
>13	50629°	~	. 5740	1 2677	40.14	24.017	EEE .	9.7677E-04
- 2	916. T	· ·	0 6	. "			4.12	. 2364E-0
Š	H . 1965	~	11-	15024	46.0	1	19	32376
2	1 .6228	2 2	732	•	6.2		6.31	. 2328E-0
Š	H .1657	1	•	6	3.5		7.30	.1924E-0
>1	H .0513	•	•	- i			19:	• 1600E-0
>	4 .1846	2	8	-	5	m (6.15	. 1976E-0
> !	0440 ·	5	~ 1	-	M: O:	N	16.0	126000
	C189.	N (• •	v •	•	7.		0-36611
Z 3	794C • 1			:	\ \ \ \	Ale	30.00	0 14 10 6
- :	2555 H	~ (296.	ю.		Ÿ	77.0	0-3666
211	5916°	mi	843	•	mir O	M IS		0-14C#77**
> >	9/50.	r c	260.	•	, .	9 9		34046-
- 3	2007	•	704	1 1 1 1 1 1 1) (<		56316
. >	1470° H	1 6	•	•			A. 23	0-38590
- 2	- 1988	-	412			5	12.64	0169E-0
· >	7070 E		136		37.8	3	5-60	.9538E-0
• (>	E - 4128				7.0	7:5	6.07	. 5692E-0
Z	1 .3958	~	.905	-	2.8	•	9. 99	4685E-0
-	T 320. H	~		1	15.3		4.48	.8714E-0
>	M .0236	•	960	•	9.0		0.03	. 6297E-0
Z	\$E04. 1		919	•	7.0	•	3.12	.07346-0
2	0110°	5	053	•	₩.	٠, ا	0	.05756-0
Ž	E24E" H	m ,	. 451	•	7	֓֞֜֜֜֜֜֜֜֜֜֜֜֓֓֓֓֜֜֜֜֜֓֓֓֓֜֜֜֜֜֜֓֓֡֓֜֜֜֜֜֡֓֡֓֡֓֡֜֜֜֡֓֡֓֡֡֡֜֜֡֓֡֡֡֜֜֡֡֡֡֡֡	20°2	• 1416E-0
2 3	-	7	N 18	0661-	-10	707.46		4.0032E-03
2	0168 N	· ·	960		7.0		6	.0097E-0
S	¥946. P	•	137		1.0	10.695	. 13	0556E-0
Š		•	042	•	3.8	-	3.56	.3900E-
Z	1 . 2699		9 <u>6</u> 6		5.0	~	•	.15906-0
SY	4 .1796	+	500	9.	1.7	6.0	9.16	.6218E-0
2	9692. H	•	. 5637	7	6.9	3.7	0.62	. 9200E-
SY	9010° H	•	033	•	3.5	∹	3.34	-1374E-
2	4 .1231	2 1	~	-	7:1	1.0	9:00	-1856I:
Z	1897	7	62	*	3.5	~	2.01	.232
5	122	10 5	1	1 .6269	9.6		7:01	-3986E-
SY	M .0350	•	30		2.6	9.7	. 55	-2734E-
	. 1985	•	. •	~	=======================================	7.6	8	. 3679E
	1 .1942	4 ~	60		0.9	7.5	15.530	11596-
SY	A . 2589	6 3	:4479	8640:- 1	•	C: 0	• 66	-34129
Z	8.5	~	4877	23786	9	27.057	9.866	
Ξ	973	~	0	5	55.08	6.7	11.467	92E-

STRUCTURAL MODES

		5	i	6	•			•	24.045	44	4	
	73	287.58		7		75.75	1 3242	10	45.056	10	15E-	
	, K.	7	. Z	2	. ~	.584	343	26	27.131	60.	7099E-	•
	26		LANT	0795	5 2	.552	119.	00	25.845	90.	1812E-	
	21	90	ANT	07A4	- 1	.715	•	6	34.190	. 50	5966E-	
	50	10	SYMM	1149	-	.979	•	47.02	53.414	6	6147E-	
	59	37.	ANTI	0895	2	.6930	.083		37.605	9	. 5319E-	The second secon
	9	90	SYMM	6	~ ·	492	102	5 1	192.62	9 6	•0560E	
	61	90	ANTE	1463	* *	444		2.5	124.22	518	- 404 / E-	
	7 6	309.29	T L N V	12194	. 2	.5533	1 .2907	32.95	24.689	1.658	6.0641E-04	•
	49	6	ANT	0641	-	5252	9	95	21.173	8	- 6021E-	The second secon
	6.0	2.5	ANTI	1102	1 	. 790	-	11	30.661	. 84	. 8222E-	
	99	5	ANTE	0484	7 6	499	•	96	17.402	20	. 9326E-	
	67	37.	SYHM	1156	*	505		24	22.674	. 73	. 8768E-	
	9.9	5	SVHH	2660		•	7	96	24.246	ю.	-3620Q	
	69	52	ANTI	5	į	651	. 90	=	43.028	57 ·	• 7527E-) T
	70	• 9	ILHY	1017	•	.4367	-119	9	22.395	.97	8758E-	
	7.1	57.	ANTI	5	6 5	534	. 463	5	24.761		-149BE-	# P
	72	53.	LHA	0342	-	445	69.	8 :	13.567	֓֞֜֜֞֜֜֞֜֜֞֡֞֜֜֡	6129E-	
	2	55	SYMM	0976		•6104	-		34.003	?	. 4030t-	
	1	65.	NH A	0982		•619		5	35.058	?	4723E-	
	75	67.	SYMM	5	6	.6127	170	0	34.487		3 - 36 L 3F - C	
	92	68.	SYAN	0870		613	• 50	5	34.329	e i	• 2984E-	•
	11	70.	ANTI	0403	ļ	. 838	97	20	43.861	2	• 30 /6E	
	7.0	73.	ANTI	0794		•612	. 62	9	30.369	24.	0256E-	
	79	74.	SYMM	9000		500	0	3	21.524	5	. 9138E-	
	90	75.	INI	9960		398	6.	62	260.02	9	.0232E-	
	6	76.	ANT	0361	9	394		9	19.786	5.	-0495E-	•
21	9 2	78.	¥ ¥ ¥ .	•		670		2	37.610	23	• 8411E	
-	83	78.	ANTI	0354	İ	.368	-	6	17.564	֡֜֞֜֜֜֜֝֜֜֜֝֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	- 60306-	management of the species of the second of t
-	9 4	93	LNT	0721	•	.375	7.	5:	286.02	7.5	- /021E-	
	62	93.	ANTE	0342	9	362	•	26	17.071	3	3636	
	90	37.	T T	0815		425		= 5	191.12	77.	-30706-	
	87	90.	ANT	0756		528	100		101-07)	. 4719E	
	ED 6	- - -	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7670	n -	. 572			24.333	25	-8940E-	
	2 0		1111	777	- 4 - 5	7	17		13,383	2.13	-9564E-	The second secon
	? =	*	LIN	.06413			2	23	46.062	Ę	7.4988E-0	•
	60	70	LINI	0328		395	17	95	20.176	0.55	-1295E-	•
	6	.60	SYMM	29	• 01	477	05	=	20.246	• 16	.0725E-	
	76	6	SYMA	ÖŽÍĀ		. 5336		6	24.370	• 62	. 5498E-	
	95	11.	ILNT	0726		.462	0	36	25.278	9	. 6613E-	
	96	3	ANT	0524		664	62	5	21.910	9	• 4113E-	
	4	÷	PNT	0623	-	391	•	7	20.334	7	- 10025	
	96	E	LINT	> 5 E 0		\$E2.	2B	m :	164.51	7	-2/0/0.	
	66	ċ	SYMM	9	~	86		2:	26.269	5	2007	
	100	-	SYHH	0657		565	7	5	56.07	ָ פַּרָ	-20110.	
	101	ë	SYMM	0237	2	.255	21.	29	267.0	7	. 70375	
	102	30		0574	m (6290	•	m (169.12	•	- 70 50 C-	
	103	2	ANTI	79	- !	.231	17.	2	12.02	• 1	104400	The second secon
12	104	m .	ANT	.04220	•	6	9.	2 .	20.438	7	- 07 6 66	
=	105	51.	SYMM	0430	ص ص	. 2176		97	80.4.0		-12060.	
10	106	*	SYHA	0434	_	218	•1•	_;	586.0		• 1646E*	
a	107	54.	SYNA	۳ : ا	20	544	91:	-	12/ 92		- 3004E-	
30	100		I	0428	.	2.	3 .1357	5 :	23 013		501465	
,	109	55.7	_ S	01010		076	90	0	0.085	Š	. 61.15E=	15
9	110		•	0.323		50.			943	; ;	7327E-	
	į											

	12	494.9	O SYM	39	1	62042	3 .1351	0.0	1.2	. 626	99	
•	12	4904	Z ANT	6.0		6 E # 1	- 20	9i.	•	10	109	901
•	12	501.1	127 9			000	0 6	9:0	0 -	~	200	1 1
1	12	204.40	TNY Z	3	i	456	-17	9	1	90	0	1.6
•	12	7 506.5	TNA 9	051		194	22	9.9	9	20	606	- i
	12	9 519.7	A S Y	39		.259	14	7	9:0	7	984	i 🖈 🗆
•	12	9 522 9	ANT	037		. 331	02.		4.0	• 62	975	\$ 0 - 4
	.	525.3	TNT OF	7		466		?	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֡֓֓֡֓֡	9	. 605 . A .	
1	710	530.1	NA S	34	-	296	61			5.0	154	904
		530.9	, z	32	,	570	2	61.85	•	32.924	206	
1	9	537.0	S ANT	027		. 531	.75	9.9	0.0	. 23	. 826	ī
•	3	563.3	NAS O	020		406	- 20			6.53	663	\$0-31
	•	5 545.2	N A N	9		676		7.7	,,	200	985°	1
1	716	553.3	N N	200	1	590	13			20.	041	90-3
)	1	560.6	7 ANT	038		.703	. 7.	2.2	5.3	2,11	956	
	-	560.9	INV	910		.418	.01	•		11.	E00.	ı
•	41.	563.8	NA S	500		306	27	5	7:7	4	M (C	\$0 -3 1
	•	366.9	1	2 9		. 633	i	14.41	ָרְיָרָ היי	55	120.	
		470.4	E A C	0:0 7:4		442	3				93	F-06
•	• •	5 571.5	2 3 TH	640		.622	- 37	•	5.5	•	. 812	
		574.1	HAS	047	1	609	37	7	4.5	69	676	1.
	•	579.3	N V	020	İ	. 567	110	1.0	4.1	9	.724	1.
ELLI	•	580.2	7 SYN	950	-	. 555	32	M . O	3	. 62	-71	ĭ
	7	585.0	12 S 7	200		613	75			2	160.	79-4
•	א ע	591.4	248	038		390		::		3	779	
	15	592.8	S ANT	036		570	67	2.7	3.4	99	.473	1.6
•	G 11	602.9	TNV 9	039	į	. 733	-10	3.2	3.67	19:	640	10-9
	5 0 4	9.409 4	HAS 6	1	.	. 473	i	38.57	4.6		200	\$01.11 \$01.11
		628.0	# A S		-	408	00		77.0	9 (47) - 1944 - 1	B 3 4	
)	S	631.4	ANT	036		. 423	.53	57.2	1.66		.015	-04
	SO 1	9.649	ANT C	010	.	.247	50.	4.9	9.57	7:17	.577	OF
	51	620.8	E SYR			- 702	940	BE - 46	80 C	17.	. 6 4 4 . 6 4 4	
	9	672.6	ANA	36	• •	. 457	04.		9.92	2.	634	G(1)
•	16	677.1	SYA	023	-	736	.36	1.0	2.41	99	. 850	0
	16	681.7	PAR A	037	-	790		72.6	6.44 4-33	27	103	P/
1	9 -	685.9	E	770	- ~	558	-112	. 0	8.59	5 5	19	P. Q.
	100	695.5	HAS E	3	m	7 7678	45	97.6	6.62	. 62	196	10
	16	704.5	NAS Z	039	•	730	•	•:	6.18	.62	8	90
•	9 5	706.2	_ Z	96960	•	4608	3 .2841	35.44	27.476	3.052	1.3010E	7 0
2	17	717.6	SYM			.776	•	6	3.4	£ 3	154	90-31
=	17	727.7	SYM	000	•	. 708	.75		1.39	11	935	E-06
92	17	736.1	SVH	939		652	63	2.5	0.97	:	. 613	ĭ
-	17	740.6	L NY	027 757		509	110	9.7	5	5	117.	*0-4
• ~	17	743.6	AYS 1	39	- 60	406	• •	. •	23	9	904	īī
	1	6.91	HAS 1	032	1	619	15	0.0	92.6	36	.353	E-04
	11	748.3	SYH	=	~	.564	96	7	5.26	.12	. 542	10-3 (
•	17	749.7	Z	0298		617	61	1.6	6.3 2	Š	260	\$0 - 9
,	17	750.8	Z >	04270		160.	i			2.5	1 • 0 • 7 5 F	
•		751.5	2 2 4	0447		114.	7 .		7.5	36.	2 5	70-1
:	= :	0 1 / 1		P 1				•)	# 1 1	1

5	÷.	_	7		• •		2	-		1	-		!				i				1		-																1							•					
												:	•		:																	:							1									•			
										:							:				!																	!	:									1			
															:		:																					1							:						
!									. •		,						!				!																	1													
1										!						!					,				- 1			:E															:							:	
965E-04	03E-	110	02E-	777	200		326-0	12610	ى د	٠	E-0	ш	E-0	L	L.		<u>ا</u> ي	å,	١.	L.		4	<u>.</u>	L.					E-0	E-0	20E-0	55E-0	05E-0	747E-05	61E-0	14F-0	13E-0	8837E-05	92E-	15E	-346	59E-	421E-05	53E-0	346-	E-0	-329	716-0	9436	872E-	0165-0
1.5	0.1	3	-		•				٠-	-	•	•	_		_	M	-	(m)	5	m •	7	- (١,	n				-		•			•	12.4	0 4		•	-	÷	•	٠	۰	:	-			4.	6			
6.72	9		•	•	•	١.	•				ė	-	÷				•;	17.76	• 1	•	•	٠.	06-12			0	14.	•				m,	Ň.	~			1		Ň		Š	۰	<u>-</u>			1:1		1.96			•
34.628	24.578	34.2.46	32.247	270 76	204.07	007	140.06	27.077	39.025	502.18	11,463	10.472	39.752	10.252	10.365	16.533	33,135	10.346	26.234	10.734	46.767	33.775	100.11	10.546	155.12	24.2.42	341.16	101.02 26.41A	23.717	22.540	31.065	14.245	13.342	14.536	17.120	14.77	45.241	16.050	14.845	29.901	17.072	20.833	25.983	0 0	14.0		21.2	30.891	20.247	7 E	1007
. 160	72.59		•	114	7	, id	0 4	0 J-	65.63	10	-	*	0	~	•	0		•	~!	•	D H	m (> (Ņ	J.	'n	'n	20,00	1	ó	~	~	Ň.	19.63	Ų C	2 14	9	26.05	•	5					77.09		0	33.83	31.12	33.00	•
	7.2	5.3		917	.		,	2	- 5	2	0	9	5	13	=	_	53	1	2		90	2 :	0	~ ?		* *	- F	y 4	25	20	30	34	\$	69	9 6	2 6 7	7 -	55	31	11	84	£ 3		> 0	2 2	30	61	70.2	~ .	91/	-
10	•				1	-	7 .		•	. 2		7.	•	-	~	=	-	436	4 .24	3	3 .27	• 31	000	325	• 33	•	E 6	36.	4 29	4 .26	-	~	7	4 29	7	n je	12.7	· KT	•	3 .22	4 .32	7	610- 6		95 5	•	E	E .		71°- 6	
1599	2000	K 6 K	,	T 16	9	> i •	90	2	7427	22	92	30	_	60	25	i	146	190	124	20	699	425	702	36.9	3235		V 16	9 6	2760	2737	4296	•	~	(m) ×	~ •	vκ	7	, 1677	•		•		~ ×	•		3967		•	5198		4301
-		- 1	•		•	•		١	i	-	i	•	•	i	i	•	•	•		•	•	•	•	i	•	•	•		•	•	i	-	•	•				•	ı		•		•) 0 ¤				5 0 (• i	•
2	3 •		ų r	-	D I	6	•	٠	• •	0	•	-	•	-	•	0	~	~	~	01	2	•		•	۰	~ !	-					-	•	2	01	•	n K	,	•	-	€	•	•	,	-	•	-	€	2	6 5	0
0620	2222	7 7 7	2000		2960		6	0	3 6	770				-		_	-0	0		-	•	-	-	•	~ 1	•		.05894	160		10	•		~ *	•	7 0 10	09970.		. ~		æ	. 01A85	C t	12920	16270	.02196	14110	.04075	.02862	1040.	.0397L
		- 2	- 1	Z :	2 :		INT	- 2 Z 3	E 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ANT	7	E	Z	SYNA	Ξ	SYMM	ĭ	5	무	Y		SYNA	S	Z	Z i	-		E 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Ī	E	-	-	ANTI	z :	E #	1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ANAT	-	SYNA	_	INT	SYMM	- 3	SYRE		E	· >	-	SYNK	z
7 0 Y		:	7.		7.5	15.1	2.1	0	00.14		15.6	51.3	13.0	9.9	9.4	5.5	37.0	17.7	10.4	50.9	53.0	20.5	20.5	33.4	84.7	15.7	900		7	22.9	35.2	35.6	35.8	07.7	6.60	9 2 1) ·	7 Y Y	2 2 . 5	28.2	33.0	43.2	43.4	66.1	9.6	26.6 56.6	56.6	9	6.29	63.4	44.7
7 7 4	000			- {		- 1		ì		ì		1		i		Ì		l		1			-		- 1		-		i		1		i	į				-		1		1	Ī	•			1	237 9	i	1	D V 7
-	4 -	-	-		→ :	7	∴ :		→ =		. -		• =	2	~	7	~	2	~	2	~	~	2	2	2	~		21			2	~	2	2	~ (2	~ ~	2	. ~	7	~	2	~	~ (2	۰ ۷	2	· ~	2	2	_
																											į	:111	1													1			İ			: :	2	9	•

-	1037.5	7	-									
252	103	-	18/60.		E 4	1516. 7		39.715	•	969	- C	
			107	• •	2	1406.	10.01	40.394		9.7986	-03	
	1044.2	. Z			110	4 2807	46.91	39.984		9.5909	-03	
	1046	Z	0285	6	15		46.65	27.146		6.4440	50-1	
	1049.4	2	0191	i	29	3	90.75	25.772	ě	9.8025	E-05	
110	1049.7	-	0134		03		247.73	23.369	~ .	5.5334		
	1049.8	3	382		6	3	47.50	37.303		0.00 /V	202	
	1054.4	Z :	0277	•	E (343	90.44	176.06	-	4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
	1055.7	Z	€ (6 6 (6 6 (6)	•	20		70.0	2000	-	7606 7		
~	1057.9	>	0177		5	Ñ (67.43	21.145	-	99469	601	
-01	1062.6	3	0388	>		6407	76.60	100016		10101		The second secon
	1068.9	Z :	0232	•	6676	0 1	*1 °501	35.607	•	0.1410		
л.	0.0/01	2	2343				DALKE	101.06	1	1160	101	
ο.	1.0701	· ·	5070	•	6	, ,	100-01	50.28 50.28		1.1201	, o	
	5/01			> -		1 2 2 1 1	1	100	3	A. 3007	E-05	
ο.	**************************************	2 4	1010			1085.4	141,86	35,542	7	6-1636	E-05	
	0000	7	215		17.00	1727	106.36	53.702	2	1.1504	E-04	
	1100	7 2	0240		10		720.37	46.999	;	1.0360	E-04	
- 1	1116.0		0110	0	-		617.49	27,356		5.6745	E-05	
	1126.6	5		1	10		69.19	23.014	Ξ	3.4937	E-05	
	1143.9	3	0103	•	3714	•	96.00	14.776	~	2.7594	E-05	
	1155.7	4	0192	•	55	3 .2802	191.22	35.986		7.2547	E-05	
100	1159.0	S	0352	•	31	4 .5026	172	67,731	=	1.3352	+0+	
	1111.4	4	2	•	6	3 .5400	1445.04	23.202		4.4220	E-05	
_	1176.4	Ž	1010	ŗ	0		571	24.671	•	7261.	E-03	
21	1170.9	5	9		6	4 .2679	104.10	34.136		7.334	E-03	
-	1187.4	<u>ن</u> ک	0165	101	335	ÒØ	775 775	25.780		1242.6	F 103	
2	1 21 4 1) ic	23	2961.27	22.049	Ì	3.9779	E-05	The same of the sa
	1217.	7		·	: =		100	13.010	, m	2.3795	E-05	
	1219.	=	0201	-		3 .3705	171.50	30.925		7.0319	E-05	
•	1220.0	~		10	-		66.97	30.555	7	4.4105	E-05	
	1230.	=	0105	-	7	Φ.	961.63	26.043	~	4.3040		
0	1296.6	5	020	10		Ok	103.12	296.66		1106		
	1253.1	in 1	.02779	•	20	<u> </u>	44.30	35.017	3.54	5-2414E-05		ft: '0'
∞ (0	1200.	5	7660	•		1 5	67.04	94.49		1786.7	F-05	
~ 0	1.1021 (7 5	~ 4	•	6806		44.37	36.77		5.0740	E-03	
HO	1268.9	5	0262	0		4 8049	91.32	43.305	2	7.0629	E-05	
• •	1270.	5	2	•	3	-	47.08	37.493	•	6.0219	E-05	
10	1270.9	1	0269	•		•	49.60	34.295	~ ;	5.5034	E-05	
0	5 1271.	=	050	•	8		82.88	47.157	m	7.6369	E-03	
•	5 1271.3	5	0307	•	ς,	712	70.04 70.04	34.401		7 7 7 7	2012	
010	1271		9 13		1403	1000	¥0.46	710.47		7.1025		
~ 0	1271.		0000	•		4 .8459	34.68	47.973	m	7.7463	E-05	
	1272.	-	0325	6	567	5 .2011	46.55	37.406	Γ	5.9569	E-03	
301	1273.	=	60	10	821	+098.	86+15	49.565	e	7.9694	E-05	
0	2 1274.	5	0271	6	35	4 .2531	46.63	30.993	= 7	4.9515	100	
303	1 1274.	3	1620	2	916	4 .8467	99.25	46.034	7	119191	100 100 100 100 100 100 100 100 100 100	•
0	1275.	=	.02557	10 10 0	600	1698.	91.49	30.422	•	111401	100	
30.	12/0.	<u> </u>	ログスの		2110	7 1141	28. KA	25.073	7	7.3071	507	The second secon
505		7	0000	-	7887	4 .7538	61.79	41.262	m	6.5121	E-05	
NO.	1780	ŕ	0197	10	2	7249. 7	213.96	33.795	~	5.1502	E-05	
30F	1284.5	ANTI	0143	. 01	7	4 4759	104.79	54.469	7	3,7388	E-05	!
310	_	ANT	-	1.9	7077	E 64433	2	36.377	-		1	
116	1291.10	SYHM	020	•			1		•	•		
•	•				2116	14149	•	33.784	22.4	4.8987	E-05	

:	1171	342.3		0131	Z	- 708	٥	•		1	1 11	
		74. 776	13	•	 	9	7		32.579		4. 7999E-05	
1	0	352.0	ANT	9900		- 25	5 - 407		~	•	-30066	•
	4 6		LINI	110		2	94 6	40	34.537	3	- 8800E-	
•		-	ILNT	0055	-	9	5	99	;	40.	-01586-	
		-	ANT	0134		. 72	5 .61	47	32.	21.	. 6203E-	6
			ANT	110		61	5 556	106.	28.	9.	-9210E-	01
•	10.		SYMM			. 24	5 .230	453.	12.	٠	• 31 48E-	=
			ANT	0100		55	5 -62	880.	29.	40	- 7981E-	12
	326	379.26	SYNH	26610.	~ `	98	061. 6			20.00	1 - 64496-05	
	~114	7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0000	1	• 2 •	7 6 6	427	71) E	SAAAF	
•	A 1 (5		E 2 10	_	. 65	1679 6	. 7.			ABA1F-	
	NI IC		200	_		 10	770- 6	10.		1	-5712E	The second secon
•	o.,	1000	S Y H A	6710		7.	002.	1,00	1	•	08786	
	3 4		Z 2		-	16.	1630	- C T	1		8020	
•	V 6	19014	- 27		• •	9 6	287	27.	7		6735	
	7	420.2	- 1>	2000	•	42	191	122.	19.	-	16011	
	, c	465.0	• >	0149	_	35	5 .294	25.	14.	ë	. 5731E	
	9	450.6	-12		7	. 42	4 .32	110.	27.	2	.01946	The second secon
,		461.8	: 2	0118	•	68	5 441	693	34.	•	.3600E	
	3	465.6	. 12	0140		.43	5 8	63	23.	16.	37138	
•	9		_	_		23	5 .2	-	10.	-	.17456	OF
	0	466.9	12	0092	1	58	5 7	:	26.	36.	.07016	•
	7	469.5	>	0161	_	.31	5 30	•	12.	2	3536	P
•	25	471.R	-	0150	5 10	- 38	5 .33	•	15.	ë	.77486	000
	£ 3	482.7	z	0500	-	.54	4 .3	6	33.		. 8030) R
	7.5	495.6	-	2110	-	42	5 .36	•	15.	ń	73716	
_	5	495.7	Z	0239	-	• 63	6 • 30	0	42.	-	17932	
2	9	. 0	Z	-	-	. 59	5 - 5	47.27	36.	'n.	15551	P
1	-	439.6	Z	000	-	- 33	5 .27	o i	15	m	0-36-09	
3 -	340	*	1 N N	0256		• 64	.		•	•	300C	II IT
•	6	503.5	王 	1600	-	- 30	050	•		2	0-3177	
•	0.	•	- : Z >	1620	٠,		7 ° '			-	2107E-0	
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	64	7				3067E-0	The second secon
			- - -	0000	-		4	•	0	•	4556E-0	
	110	10	E	0236	-	62	16. 9	m	39	Ξ	26 B1E=0	
,	3	. 2	Z	0233	-	59	431	9	35.	-	96486-0	
	26	523.7	INI	-	_	. 58	.	61.7	m ,	18.5	200	
•	2		Ē	1600	19		62.	0.		177 <u> </u>		American contract to the second of the secon
	5	8	Ē	0155	~ -	0		7.4.5	0 0	36.46	1869F-	
	n is	֓֞֜֜֜֜֜֓֓֓֓֓֓֓֓֓֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֡֓֜֓֓֓֓֡֓֜֓֡֓֡֓֡֓֡֓֜֜֡֓֡֓֡֓֡֡	- + Z (2)	-		66-7			6. A0	2876E-	
•	360	62.1661	- Z	11010			5	36.52		3.0	.6134E	
	s k	7		004	۲	1 . 25	5 .80	10		35.21	.2341E-	9
•	9		Z	0119		.553	423	7	31,	. 82	4326E-	
	ي (INT	0767	;	-	5 93	~	11.	33.95	.2739E-	
	9		Z	0061	_	291	5 82	~	12.	35,35	. 2342E-	
•	19	5.6	-	0066	†	421	5 .03		12.	34.22	-3090E-	
,	÷	9.0	_	0043	-	186	5 86	0		35.12	. 3837E-0	
12	0		•	5		1016. 1	5 - 50	Ņ	m,	ָּי אָ	. 2343E-	0.46
=	9	3.4	ANT	9200	-	347	18.		1	32.00	10610	
01	_	5	Ē 1	6160	_	129.	05.1	77.16.	C1C+26 1	9	42076-	
•	371		LNT	0000	m	9		0-121 7	120.00	٠	1 L L L L L L L L L L L L L L L L L L L	
	372	•	Z :	24210			5 - 77	186.69	5 42.550	36.314	9973E-	
_	3/3	•		֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		800		ED_OEIZE_E	. 2	66	3176-	
و ا	5 / 5			3010			22	52.24	1	1	459F=	*

1693-76 SYMM - 02114 7 11 - 7755 5 - 2173 1 6 15 - 7755 5 - 2173 1 6 15 - 7755 5 - 2173 1 6 15 - 7755 5 - 2175	- 1756 5 - 2173 35.78 34.021 5.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3
1689.00 SYMM ORIGIN ORigin ORigin Or	- 7756 5 - 23173 37.037 7.037
1689.00 SYMM OLIST OList Oli	- 7756 5 - 23173 37.037 7.037
1659.78 5744 20114 7115 7125 7-2104 53.38 70-31 7.166 3.1658 7.166 3.1668 7.166 3.1668 7.166 3.1668 7.166 3.1668 7.166 3.1668 7.166 3.1668 7.166 3.1668 7.166 3.1668 7.166 3.1668 7.166 3.1668 7.166 3.1668 7.166 3.1668 7.166 3.1668 7.166 3.1668 7.166 3.1668 7.166 3.1668 7.166 3.1668 7.166 3.1668 7.166	- 1156 5 - 21173 355.78 355.81 5 5.719 3 318 5 5.719 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
1659.78 STAIN COLSTAN - 7156	
7 16.85.78 5YMM .02114 7 11 .7752 5 -2104 55.33 37.037 7 16.85.78 5XMM .02114 7 11 .6722 4 -3753 55.02 65.304 35.05 50.05 5 .0003 1 .6522 4 -3752 5 -2104 55.33 37.037 7 16.852.06 5 .9439 55.02 26.904 35.05 5 .9439 55.02 26.904 35.05 5 .9439 55.02 26.904 35.05 5 .9439 55.02 26.904 35.05 5 .9439 55.02 26.904 35.05 5 .9439 55.02 26.904 35.05 5 .9439 55.02 26.904 35.05 5 .9439 55.02 26.904 35.05 5 .9439 55.02 26.904 36.05 5 .9439 55.02 26.904 35.02 5 .9439 55.02 5	- 4056 - 4056 - 5405 - 6566 - 6666 - 6666
1689.29 SYMM OUS14 V 11 OUS26 V OUS96	- 2405 - 2405 - 2405 - 5266 - 5266 - 5666 - 5666
1689.29 SYNN 002114 7 11 7196 5 5114 595 7 1689.29 SYNN 002114 7 11 7196 5 5 5 5 5 5 5 5 5	
1685-29 SVHH - 02114 7 11 - 7156 5 - 3173 1683-29 SVHH - 02114 7 11 - 7156 1689-20 SVHH - 01573 10 11 - 2405 9 - 3765 1689-60 SVHH - 01673 10 11 - 2405 9 - 3765 1689-60 SVHH - 01673 10 11 - 2666 9 - 3765 1689-60 SVHH - 01678 7 2 - 6365 9 - 3939 1689-60 SVHH - 01678 7 2 - 6365 9 - 3939 1689-60 SVHH - 01678 7 2 - 6466 9 - 3635 1715-50 ANT - 01678 9 1 - 4010 4 - 2601 1715-50 ANT - 01670 9 11 - 4010 4 - 2601 1715-50 ANT - 01670 9 11 - 4010 9 - 2966 1726-71 ANT - 01670 9 12 - 4010 4 - 4204 1805-21 ANT - 01670 9 12 - 4057 9 - 0174 1805-21 ANT - 01699 9 12 - 4057 9 - 1024 1805-21 ANT - 01699 9 12 - 7245 9 - 1024 1805-22 ANT - 01699 9 12 - 7245 9 - 1024 1805-22 SVHH - 01670 9 12 - 7245 9 - 1024 1805-22 SVHH - 01670 9 12 - 7245 9 - 1024 1805-22 SVHH - 01670 9 12 - 7245 9 - 1024 1805-22 SVHH - 01670 9 12 - 7245 9 - 1024 1805-22 SVHH - 01699 9 12 - 7245 9 - 1024	
1663.78 3777	
1659.06 SYMM ODE 11 T156 ST T156 SYMM ODE 11 T156 ST T156 ST T156 ST T156 ST T156 ST T156 ST T156 ST T156 ST T156 ST T156 ST ST ST ST ST ST ST S	
1659.29 SYNN .01639 6 11 - 1659.06 SYNN .01631 6 11 - 1659.06 SYNN .01673 10 11 - 1659.06 SYNN .01673 10 11 - 1659.06 SYNN .01673 10 11 - 1669.06 SYNN .01673 10 11 - 1669.06 SYNN .01673 10 11 - 1669.06 SYNN .01673 5 1 - 1775.50 ANTI .01690 6 12 - 1775.50 ANTI .01690 6 12 - 1776.50 ANTI .01690 6 12 - 1805.73 ANTI .01690 9 12 - 1805.73 ANTI .016	
1659.29 SYNN .01639 6 11 - 1659.06 SYNN .01631 6 11 - 1659.06 SYNN .01673 10 11 - 1659.06 SYNN .01673 10 11 - 1659.06 SYNN .01673 1 6 11 - 1669.06 SYNN .01678 7 2 - 1699.05 SYNN .01678 7 2 - 1775.50 SYNN .01678 9 1 - 1775.50 SYNN .01678 9 12 - 1775.50 SYNN .01659 0 11 - 1775.50 SYNN .000716 9 12 - 1775.50 SYNN .000716 9 12 - 1775.50 SYNN .000716 9 12 - 1775.50 SYNN .01659 0 12 - 1775.50 SYNN .01659 0 12 - 1775.50 SYNN .01659 0 12 - 1775.50 SYNN .01659 0 12 - 1775.50 SYNN .01659 0 12 - 1775.50 SYNN .01659 0 12 - 1775.50 SYNN .01659 0 12 - 1775.50 SYNN .01659 10 12 - 1775.50 SYNN .0165	
1689.29 SYM .01839 6 1659.06 SYM .01573 10 1659.68 ANTI .00533 4 1665.20 ANTI .00533 4 1665.20 ANTI .00578 10 1719.60 SYM .01078 7 1715.50 ANTI .00506 9 1802.73 ANTI .00506 9 1802.73 ANTI .00509 6 1802.73 ANTI .01999 9 1805.50 ANTI .01999 9 1805.50 ANTI .01958 10 1805.50 ANTI .01958 10 1805.73 ANTI .01959 9 1805.50 ANTI .01958 10 1905.62 SYM .00579 9 1905.62 SYM .00579 9 1905.62 SYM .00563 10 1905.62 ANTI .01958 10 1905.62 ANTI .01958 10 1905.62 SYM .00579 9 1905.62 ANTI .01958 10 1905.62 ANTI .01958 10	
1639.78 SYM .016 1638.71 ANTH .0051 1659.68 ANTI .0051 1659.68 ANTI .0057 1669.65 SYM .010 1769.65 ANTI .007 1769.20 SYM .010 1769.20 SYM .010 1769.20 SYM .010 1802.73 ANTI .007 1802.73 ANTI .007 1805.50 ANTI .007 1805.50 ANTI .007 1905.50 ANTI .007 1905.50 ANTI .007 1905.50 ANTI .009 1905.50 ANTI .007 1905.50 ANTI .009 1905.50 ANTI .009	, 0 - 5 0 + 6 - 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1635.78 SYAM 1635.78 SYAM 1659.06 SYAM 1659.68 ANTI 1669.65 ANTI 1715.00 ANTI 1715.00 ANTI 1715.00 ANTI 1805.73 ANTI 1805.73 ANTI 1805.02 ANTI 1805.	000 000 000 000 000 000 000 000 000 00
16535.78 5 16535.78 5 16535.78 5 16535.78 5 16535.78 5 16535.78 5 16535.78 5 16535.78 5 16535.78 5 16535.78 5 16535.78 5 16535.73 5	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Thurst and sin size a sin size sin size
3857000000000000000000000000000000000000	
	1

ORIGINAL PAGE IS OF POOR QUALITY

ーチリクト

ELIPE

PRODUCT TREASERT THE PRODUCT TREASERT TREASERT THE PRODUCT TREASERT TREA	d E U		incraft		
FREQUENCY STREETHER STREET	₩	w from th	3 13 13		
18 18 18 18 18 18 18 18	HODAL INFO	RHATION			
100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FREQUENCY		TURE	CAVITY OF MODES AT STREET	
100 1	(74)		IN SAND	IN SAND IN B	
100.0 1 2 1 5 1 1 1 1 1 1 1 1				•	
100.0	0.06		22		
185.0 14 41 10 15 15 15 15 15 15 15 15 15 15 15 15 15	0.00		290		
100 14 55 21 25 250 25	100.0		14		
2500.0 22 01 05 140 140 140 140 140 140 140 140 140 140	160.0		55		
115.0 31 116 116 116 116 116 116 116 116 116	250.0		5 5		
100.00	315.0		011		
100.00 38 229 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	400.0		151		
1000.0 53 267 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		٠	229		0
1256.0 27 378 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			267		RIG
1600.0 1 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			378		IN _O O
			400		ALOR
	2000.0		0 0		- P
	3150.0		0		A
	4000		0		GAL
	2000.0		0		: IS
				-	
					A DESCRIPTION OF THE PROPERTY

5.	ACOUSTIC NODES	E 2 .										
4		200		200	NO 14 PR							
	(H12)	TYPE	•	FACTOR							į	
-	0	SAHA	0.	0.00000	-							
-	16 . D.C	PHAY		? E	100							
•	: ;	SYMM		.09703	-							
	9.6	SYNH	0	0447	1.9372E+							
9	5	SYNA	5	23	1.93726							
~ `	B i	I N T	·	E 9 2 0	2.4750E+0				•			
80	2.1	ILNY	-	CC 20	*							
			~ <	CE # 20 *	1.017				•			
		ANT	İ	10	4.0501							
12	02.	ANT	-	020	4.950				•			
13	1	SVMM	1	.01335	1.937							
14	110.81	SYMM	0	0167	۳			- }	ľ			
15	•	SYAH	7 1	.06119	7.317		1		-	.0006	1.4324	
16	112.23	- 1	2	. 06427	4.950		- 1	- 1	7	- COO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12/65-1	
17	114.75	SVAN	~ c	.05809			365 447.76	1111		26666	1.0246E+01	
0	110.50			4 1647	7.11		-	1	٦,	.00913	1.4324	
20	122.65			053	•				-	.01432	1.4916	
21	ı	1	1	06830	7.3175	3(1	1	-	.00767		
22			2 2	.04288	~	30			_	.00915	-	
23		1		.04514	4.9501	3			~	.01068		
24	- 1	SYMM		.03010	1.93726+00	ř	- I	- 1	-	.0008	· . L	
52			9 •	£1.60°	7.3179				→ -	71810.		IG P
07	- 1	- 1			- 1		-	ı	-	10000	- -	
					7.117	,			-	45000		
20	-	INT		0000			1	1	•	Ö		
30			6	.0803	-	, m			-	. 00625	_	
31	!	ANT	1 3	.0971	-	ř	1	HHAS	_	õ	_	
32		SYAM	_	.07582	•	7			19 19	ŏ		
33	60.2	SYHH	-	.0751	7.5990E							
34	60.5	ILNT	2	.09468	7.7066				-			S Y
35	62.3	NHAS	~	.0732/	7.5990				`			
		SYAM	2	.07171	7.3175						Commence of the commence of th	
	63.9	ILNY	m ·	94060	7.7066							
38	64.0	SYMH	-	.0500	-							
	65.7	HHAS	1 E	E 0 2	7.5990E							
9	68.6	7	4	9	7.7066							
1 }	70.3	SYMM		.06653	7.5990E							
45	7	ANT	ļ	~ I	4.9501							
£ 3		Ξ:	6	29	7.31							
-	•	ANI	Ì	C1090 •	7.1000							
C :		- 1		67700	•							
0 1	c '-		1				1			:		
		2			7.706640							

										The second secon	
HODE	FREG	HODE	1088	SHELL	3	GENERAL	IALTZED YAS	SS (KG)	4 N D 64		
CN	(HZ)	TYPE	FACTOR	T NS CHNS	AP CANP	7		9			
-	23.50	SYNH	17621	1 .505	•	239.40	.773	71.2	6.32516-04		
2		SYHH	19880.	2 2 0988	-,	117.60		114.899	•		
•	36.79	SYMM	-	1 2 1605	-	118.59	120.	109.200	7 D D O	The second secon	
•		SYRI	8	•	⊶ .	1111.17		062.011			
	<u>ان</u>	E N A S	246.0		-	71 141		42.424	SASIF	. The second sec	!
•		- 7 - 7 - 7	7	1 2 • 7405 R A • 0451	-	107.81	353	107.425			
		NAV	9 10	0.0		106.95	592	299	1.40956-09		
• •	• •	SYMM	.55832		1 6.6	121.23	316	900		- 1	
10	6.6	SYHH	1140	-	1.	106.17	101	23	\$.6025E-10		
	0.4	SYMM	040	8 4 .0252	1.	105.49	121	9	1.6701E-10	F	
12		SYMM	.07569	3 4 .1460	~	100.36	531	6 9	Z.7226E-05		
13	40.72	SYMM	.05047	4 4 0817	-	103.91	.323		8.3069E-07	- 1	
14	6	X X X X	.04765	0.00	Ξ.	56.201	200	D.4	7 75366-11		
15	01	S Y		010	- -				2 - 1 2 3 4 E - 1 1 T	- 1	
2	41.07	N N N		1790° 4 Q	→	105.75	406.4	9 6	7.3829E-09		
	414	E 3	4	710-7		104.99	10	200	3.6688E-11		
-		T X	64071	74 4	1 ****	74.30	. 862	127	6.7177E-08	- 1	
20	10	SYHH	.06348	4 .114	_	112.29	156	973	2.7002E-09	SY	
21	•	SYNA	0472	090.	1 1.03	t	.951	105.945	7,0092E-10		
22	53.65	SYMM	. 36925	1 1	2820	•	5	72.810	4.7113E-03		
23		ANT	19164.	1 18	1 .289	٦,	107.491		1.4340E-02		
42	•	ANTI	.37046		1 747	_	100.001	_	36666.		
25	16.89	SYNH	.56481		162° 2	- 1	65.50V	- 1	30106		
56	~	T T A	7 36 36 .	•	917. 7		246.00	_	36448		
27	2	PA	9126	2610-	DE 00 7	- 1	14 T 7 E	-	T. 7ATTE-AL		
82	6.0	1	50601		010.		67.320	•	2		
67	. 10	1 - 1 1	7 K K K K	444	8 Y 1 1	í	R4.508	t	2.2029E-03		
9 .		2 2			523		18.042	_	Š		
16	0 6	: E		1 7 556	7 . 251		54.022	1	£22.		
76	•	- 2	02000		2 485	34.05	7.485	_	97396-6		
76	N N	12		1146	163. 5	24.89	3.126	_	-83768-		
P #	•	. X	-	663	2 .526	22	60.816	40.6	8528E-0		
46	1	1 1 7 1	6163	564	2 - 741	78.17	59.318	. 95	. 2694E		
76	0		029	086	1 . 647	4	1.561	118.70	<u>5</u>		
3.8	09.3	LANT	0253		y • 1		.913	111	. 8944E-0		
39	0.3	ANTI	_		~	• 1	.583	16.07	. 00496		
94	0	Z	.02230	•	616 1 513	115.77	604	15.33	1.0423E-07		٠
3	6	Z (.34623	•	166.3-3	•	- KB - 93K	7	=31k.14	man and the second seco	
25	æ (z :	-	545	7-11-11-11-1		62.363		0422E-		
5 6	20.411		00000								
4			,		777	0 4 4 0	48.407	F02.FF	T.4842E-04		

2 = 2

•

:

٢

(

					İ		. •
							4 8
	Narrow B	Narrow Body Aircraft	raft				9 0
	ı						11 .
	MODAL INFORMATION	NO					
	FRE QUENCY	STRUCT	F MODE	NO OF MODE	7 2		
		IN BAND	IN BAND	IN BAND	IN BAND		
		16		\$			
	50.0	=	17	₹	901		
	80.0	10	32	11	15	00	
	125.0	22		32	50	RIG F. P	
	200.0	34	107	96	152	INA OC	
	250.0	36	151	140	388	R	
	6.004	5.5	220		0	PA	
	500.0	\$ 64 6	272	- 6	9	.⊕ AlA	
-5	0.008	12	369	0	0	E SS	
24	1250.0	00	00	0	0		
-	1600.0	0	0	ő			
	2000.0	00	• •	-	-		
	3150.0	00	00	0 6	00		
	5000.0	0	0	0	0		
21							
2 2							
G							
•							

ACOUSTIC NO	HODES								
ш	NOOF	•	\$501	EPSTLON					
1 296.49		61 61	0.00000	1.31326+01					OF
6.3	SYNN	~ ~	2792	1.95086					
5 32.67				1.9508E			•		IAI OR
40.0			20100	1.95086			•		1
52			-10 1	5.00			•		©∑ AL
32.	ANTI		03084						
61.0		*	.02698	5.2		1			
	1	2 5	42E20°	1.9508E+00 5.2878E+00	376 26	240.99 SYNN	12 1 N	.02367 [.3]	11926+01
11.1			*03294		10	- 1	17.1	_	967E+01
7 73.50	SYAR	o	.02083	3.96446	6 G		18 1		1356+01
9 75.2			.03020	اسا	-		161	-	207E+01
20 76-61		7 7	.02913	. [.	83		13 1	-	132F+01
78.7			0276	. 1	3	ľ	1 41	4	335E+01
8 6		7 9	.02567	7.9288E+00 11.9508E+00			18 1	1.	799E+01
12	ANT		10250.	1 '	20	7.31 SYMM	1 51		3132E+01 8335E+01
89.4		1	.06116	1	9 6	1	181	1	799E+01
99.6	-	1	• 05915	- 1	90	ŀ	19.1	- 1	967E+01
89.8		11 0	O 4				15 1	02062 1.3	132E+01 135F+01
			.05112	1	63	4.44 SYNH	191	ł	1.3132E+01
98.0	1	2	033	ľ	-	- 1	19 1	95020	799E+01
100.2		N 60	.03876				17 1		32E+01
100.	SYAM		100				18 1		335E+01
103.2			03658	1	1	1	161	02684 1.5	
38 103.61	- [0	- 1	- 1	7	19.1	01867 1.3	32E+
9 104.2			0546						
41 104.90	SYNN	- 6	.04448	7.9					
42 105,46		}	103504	- 1					
105.5	ANTI		ന മ				•	:	
107.0		3	0517	8.5					
801		2	7550	9. (2355 4					
٠.	Z Z Z		.03689	5.2878					
1	١								

							•			
										65
					•	•		<u> </u>		
	STRUC	TRUCTURAL M	HODES							
	NONE	FREO (HZ)	HODE	LOSS FACTOR	SHELL N NS CHNS	PLATE NP CANP	GENERALIZED TOTAL SHELL	MASS (KG)	JREVB	
	-	_	SYMM	.29045		0 + 6040			1.22406-03	
	~ ~	24.82	ANTI	58992	1 27086	i.	2 "	:12 104.505 :52 512.600		
	•	100	SYNK	.14307		19113	561.06 68.3	152 476.880	1.2000E-04 2.9388E-06	
	9	<u> 기</u> 급 '	SYNN	.04182	m -	60 4	492.90 14.277	77 477.120		
	6	32.02	SYRR	.05678	6 4 .1037		473.61 6.2	239 464.727	-	
		•	SYMM	. K.	4	00 0		543 460.227	- 1	O!
	<u> </u>		E E E E	.04689	9 4 .0703			.414 453.149	1.7527E-09	
	12	16	SYMM	26540		80 4	~	175 450.402 166 423.372		PO (
_	-	35.89	ANTI	70][1	153 182-962	1	PR ·
	15	9	ANTI	9	-	7	ہ احب	166 40.331	٦,,,	Q
26-	16	2,4	N X X X	.13911		•	5 =	149 416.830	- 1	
	18	, S	SYNN	60	1 2 .4026	2.	a	1.135 4.148 1.897 404.049	m ~	
	20		SYAM	04290		9			٠	
	21	•	SYNN	04134	• •	00	396.63	.416 393.924	•	
	23			04045	9	0	393.12	251 392.801	3.1124E-08	
<u>-</u>	* %			99366	m m	1 .2	533.05 234.	137 79.727		
	26		Ł	. 56685	•	1 -1	— —	693 31.518 357 204.890		
	28	40	ANT	.22814	~	1 6	731.67 166.534	534 90,900	© 0	
١	30	61.19	SYNA	22749	1 1 - 3632	, n	931.12 115.386	843		
	32	- 1	ANTE	. 55443	n .	2 - 2	259.62 189.	1 "	' · · · ·	
_ 	33	9	SYNA	.36633	•	15	837.26 324.799	2	1.70806	
	35		ANTI	60	-	2 1	945.22 283.	- 1	-	
<u>.</u>	36 7.6	77.23	SYNN	.56005	7) 4	2 - 3	430.53 254.709		4.2867	
13	9.6	1.7	2	2712	'	9 - 2	832.06 265.22	222 533.682 394 254.681	.	
2	C	36	ANT	.61095	1	2 1	212.56 178.055	1	8.6133E-04 3.8055E-04	
	2	٠١٠	N X X X	056	-	1		6.2		
,	43	· •	Z	8	٠,	2 .7	570.86 60.25	254 505.230	1 - 4163E-U4 3 - 6440E-04	

																														IM. OC		S C						01								
4.4752E-05	00-37ccy 7	2012101	2.0001E-03	4.7744E_08	4.59656-05	2.540BE-05	2.7583E-05	2.9908E-05	2,2981E-05	3.2285E-05	3.2984E-05	5.0038F=05	19495-0	4,4536E-05	5.3355E-05	3.4365E-05	3-32426-05	2 0303E-0E	8.4303E-05	4.1848E-05	3-17916-05	7.4758E-06	3.4915E-05	4.07556-05	4.06776-05	3.8625E-05	2.2723E-05	3.5191E-05	6.2446-05 4.22446-05		4.0036E-05	3,13556-05	1.00706-05	3.5528E-05	3.20986-05	2.6402E-05	Z.3493E-03 3.1941E-05	3. 3908E-05	3,09446-05	3.6758E-05	Z 4004E-05	**************************************	1.9501E-05	3.5152E-05	6905	2.0408E-09
'	ra	2	200.1	2 170.532	82.930	029.	17.683	33.623	.992	629.24	410.41	95.716	6 84.282	98,639	163,208	3.219	75.664	1 63 720	24.674	2.925	2.410	214,321	8.144	666*	30.618	1.601	102.442	48.111	421°00;		3,462	4.871	42.222	22.043	49.225	22.206	13.313	13,376	9.958	12.437	177.6	21.150	25.209	3.022	7.867	130.000
972.35 260.16	75.61 272.406	47.17 172 24	389.61 200.02	3009.37 349.01	65.25 321.79	86.58 177.49	43.92 187.73	18.07 194,66	50,98 167.06	80.29 21/.93 70 62 223 44	170 06 6630 44	406.30 277.46	85.68 289.85	529.61 311,20	74.65 383.04		20.072 80.051 24.041 29.051	216 04 21	1124.46 258.91	24.67 308.05	135,94 238.95	6.12 56.76	18.62 265.96	50.51 306.54	11.906 14.11	391.78 294.653	5.00 188.65	69	9 6	5.29 242.532	464,47 311.520	-	2141.84 166.953		6905.87 268.818	_	_	_		_	_1 _		صا			۔ ا
4			•	1	.3631	.0363	1814			-	1	4735		ł	,	Ī	9 9	1		ı	0459	.5820	1165	-,0390	- 0561	0418	1024.	3	7		0714	0868	346	202	392	1210		408	1323	1479	1222	577	1795	0755	0855	
a	1 .630	- 38	3660	1 5084	1 . 4971	1 .3666	4857		4058	6646	9009	1 .6206	1 .6253 5	1 ,6466 9	17304	' '	7 6 2666- 1	4 - 4710		16636 5	1 5886 4	12152 5		1 - 1009 4		1 6911 4	9 8695	4 5524 - 7	•	ŀ	• 7745	•		1	•		•	1	- 538	04.1	7	37	.55	729	EG -	5601
02588 6 1	6 6 6 9	01751 4	03905 1 1	6 525	95 1	9	æ (2 1	<u> </u>		949	05069 5 1	05473 10 1	7525	05443 6 1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-	6	-	3228 2 1		~		1 9 6624	- m	.05092 7 1	-	1682 10	•	•	101		-	760 5 1	1720 8 2	-	04770 0 12	7	0	21 01 \$5000 01 0 87100	43 9	215	982 10	628 10 1	1456 10 12 1200 9 2	127 10
NAX	SYMM	SYNA	ILNA	ANTI	ANTE	ANT	ANI		ANI	· VEAS	SYMM	SYMM	NHAS	SYMM	HHAS	ANA		SYAM	SYMM	ANTI	ANTI	ILNY	Z	1 L Z Z		ANTI				ķ		O WWAS		1	O. NHAS		N	_	O LINY			_	•	SYNM	NATE OF	N L
146 585.94	842	89.0	9 598	0 599.2	1 600	2 601.6			72 611	57 611.7	58 614.	615	5	6164	62 617.	64 624.2	624.6	626.2	632.0	34.1	63643	642.	2177	647.3	650.6		655.9	658.2	658.5	0 666.3		3.677.7	6 688	5 689.6	10 690.15	7.607	715.9	715.1	111	3 724.2	4 729.3	5 734.5	758.4	7 759.4	9 779.	0 823.5
EII	71	***	141	(4)	CT		1	n c		(17)	9	3	m ·		in d	-		3	3			-		n	22	27-	- ·	7	Ë	900	36	36	38	36		36	3.6	56	56		39	39	0	010	30	0,4

古其 教皇の はない 大きの との 西北 とうはいいかられ

Appendix D

FLIGHT TEST PREDICTIONS

- Input Data (PAIN)
- Run No. 10 (Downsweep)

NASA FLI	GHT TEST C	OMPARISONS	: RUN NO	3. 10			
1.1012	1.204	334.08	343.0				
21							
50.0	63.0	80.0	100.0	125.0	160.0	200.0	250.0
315.0	400.0	500.0	630.0	800.0	1000.0	1250.0	1600.0
	2500.0	3150.0	4000.0	5000.0		7_0	
9.27	0.84	50.0	0.33				
				LENGTH = 9.2	7 METERS		
7.89	0.00				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
630.0	3.33						
	L LOSS FAC	TOPS					
0.0400		0.0250	0.0200	0.0160	0.0125	0.0100	0.0080
	0.0050	0.0230	0.0032		0.0020		0.0013
0.0010	0.0008	0.0006	0.0005		0.0020	0.0015	0.0013
	LOSS FACTO		0.0003	0.0004			
0.0	LUSS PACIL	JNO					
0.0							
0.0					•		
	TNEU AT	TON O 1 TN	ICUEC DE	105+LINING OF	1 OF VC/	MO	
	1.95			TOSTETIATING OF	1.95 KG/	112	
0.055		28.10	2.0				,
0.0	0.0	0.0	0.0	5 A		46.4	00.0
1.6	2.1	2.7	3.3	5.0	8.0	10.1	20.0
30.0	40.0	55.0	80.0	124.0	165.0	223.0	280.0
325.0	360.0	398.0	428.0	460.0		4 = 4	A 450
1.63	1.48	•	1.16	0.95	0.75	0.58	0.47
0.38	0.30	0.25	0.21	0.17	0.14	0.115	0.01
0.08	0.065	0.055	0.050	0.045			
1180.0	1179.0	1177.0	1175.0		1165.0	1150.0	1130.0
1110.0	1070.0	1035.0	980.0	920.0	865.0	805.0	735.0
675.0	620.0	580.0	550.0	525.0			
1.7	2.3	2.9	3.5	4.0	4.5	5.8	7.2
9.0	11.5	14.5	18.5	22.0	23.8	25.8	26.8
27.2	27.0	26.3	25.2	23.8			
PROPELLER			•				
		ROTOL: 2.69	M DIA,	1568 RPM, CL	EARANCE=0	.06 PROP D	IA.
2.35	75.0	1.12	4.0	1568.0	+1.0		
5 1	.6 8						
1 1	0.00 1.5	52 1.02	1	91667E+02	.373	23E+02	
1 1	0.00 1.5	52 1.02	2	52304E+02	.661	43E+01	
1 1	0.00 1.5	52 1.02	2 3 4	11721E+02	114	97E+01	
1 1	0.00 1.5	52 1.02	4	.29884E+02	.199	01E+00	
1 1	0.00 1.5		5	.71876E+02	.344	83E-01	
1 2	.15 1.5		1	11272E+03		73E+02	
1 2	.15 1.5		2	94720E+02		55E+01	
1 2	.15 1.5		2 3 4	75439E+02		22E+01	
1 2	.15 1.5		4	55057E+02		67E+00	
1 2 1 2 1 2 1 2	.15 1.5		5	33556E+02	•	06E-01	
1 3	.29 1.5		ī	13034E+03	•	75E+02	
						· - -	

FOUR BLADE DA	DOWTY ROTOLS	2.69 M	01A, 15	68 RPM.	CL FARA	ANCE-0.0	6 PROP 0	14.						IGI P	
1														NAL DOR	
-	1569.0			-										. P	
DISTANCE OF PROPELLER CAL	INPELLER CA	F 50 4	FUSELAGE	(M) 1/3	1 = 2.	3500	וטפעהנפגו	75.00						AGE JAL	
DISTANCE OF PROPELLER	2	PLANE FROM	FROM FORWARD	D END O	USEL	-	-	200						19 YTI	
PROPELLER 4A9M	AMONTC 1 AT	104.5	2H 9												
1			•	L C	4	AXIAL	LOCATION	•	10	. 11	12		4	15	91
-	. ,6	•	.534	.680	.827	.973	1.120	1.267	1,413	1.560	1.706	1.053	2.000	2.146	2.293
					PRESSUR	E AMPL	ITUDE. 0	8 RE 20	MICEO	74					
165.00	118.5 119.5	- 1	121.1	•	122.0	122.3	122.4	122.4	122.3	122.1	121.7	121.1	120.4	119.6	118.7
7=		1	123.2	4 .		121	12	12:	2	12:	122.9	122.1	121.1	120.0	118.8
16 125.00 12 15 125.00 12	121.5 123.1 123.8 125.7	124.6	125.7	130.0	130.5		130.0	129.6	129.1	128.3	127.3	126.0	124.5	122.0	121.1
115.00	~ 0	129	131.3	132.6	4	33.	134.3	131.8		130.2	128.9	127.2	125.6	123.5	121.6
96.00	129		136.6	•	, 44 (37.	4.	d.		33	130.8	128.4		123.7	121-4
11 85.00 12	126.4 129.3 126.4 129.4	132.5	135.2	137.7	139.6	160.3	137.6	137.5	136-3	136.1	131.4	128.7	• •		121.0
65.00	-	132	135.2	137.7	0 4	139.6	137.1	136.9	135.9	133.0	131.3	128.4	126.1	123.5	121.1
5.00		7	133.1	134.9			134.3	e.	•	31	130.0	128.0	125.9	123.7	121.6
5 25.00 12	3.8		129.9	130.0	70	4 -	130.0	129.6	129.1	28.	•	126.0	124.5	122.8	121.1
4 15.00 121 3 5.00 119	9.8 121.1		5 6	126.5	127.0	124.4	126.9	126.6	• •	123.6			.	12	
00	9.1 120. 8.5 119.	121	122.0	122.6	123.0	123.2	123.3	• •	123.1	• •	122.3	121.6	120.4	119.6	116.7
						PHA	SE IDEGR	(EES)							
	.5 -116.	5 -126.3	-132.6	-137.4	-140.6	-142.4	-143.1 -	143.2	142.9	-142.6	-142.4	-142.2	-141.9	-141.5	-140.7
45.00	-146	1	-161.6		100	-168.9	67.3	64.8	9.6	3	-160.4		-160.2	60.	159
16 135.00 -146 15 125.00 -150	<u> </u>	7 -169.6	-177.1	177.6	E N	177.5	76.2	4 0	1	1 .	-160.4	15:	29	-163.5	3
4 115.00	169.7 -160.0	0 = 169.3	-177-2	176.8	178.3	-178.5	-162.7	٦,	-136.1	,	-137.7	-141.0	-144.2	-147.0	-149.(
2 95.00	-	- 1	-159.3		7	-168.9	٠,	21.0	-114.1	*	=11943	23	-127.7	-131.2	
11 85.00 -11	-112.7 -123.2 -01.7 -102.1	2 -132.9	-141.9	-129.0	-135.1	-124.1	-1031-		-67.0		=75.6	-80	-858	-B9	-63
65.00	1		86-	-106.0	11	-110.4	-82.3	-51.2	-46.4	-49.3	-54.1	• •	-63.9	-67.9	
15.00	-26.9 -37.3	3 -44.8	1	-62.	-65.6	-62.3	46.	-28.0	-19.9	-19.3	-21.6	• •	-24.1	-30.9	m.
35.00			-36.R	-52.8	-28.0	-42.4	32. 19.	-19.8	• •	-10-5	-11.6	-13.3	-13.3	6.9-	-7-
15.00		- }	-6-3	-11.2	133	12.	•			10		1.9	1.5	141	-
7 00 9 0							•	•	•	•	•	•	,	•	•

DATA	•							014.				PO	ılgır		
1568.0												1	JAI		
MIANE PASSAGE EREQUENCY (HZ) = 104.5 DISTANCE NE PROPELLER C/L FROM FUSELAGE C/L	7 E 2	- L	104.5 USELAGE	(1) 1/3		3500							. PA		
	¥	FROM	PLANE FROM FORWARD END		JSE	100	EGREES	1200	00*			ALI	ពទ		
HARMONIC 2 AT 2	2	209.1	H7									- 1			
1 2		,,	•			AXIAL	LOCATION			;					
• 0+	•	387	.534	.680	.827	.973	1.120	1.267	1.413	1.560	1.706	1.853	2.000	2.146	2.293
					PRESSU	SURE AMPL	ITUDE,	DB RE	20 MICRO	A O					
110.5	111	0.4	113.0	113.9	114.5	114.7	115.6	114.4	113.9	113.1	112.2	111.0	109.6	1	106.4
4 111.5	=7	113.4	115.0	116.2	116.9	117.1	• •		115.3	114.2	• • •	l	100.3	107.3	105.2
4 116.0	77	117.9	120.4	122.4	123.6	123.8	123.0	121.6		116.2	116.1	ŀ	11111	100.4	105.6
	12	120.5	124.3	127.6	130.0	130.5	128.5	125.0	1	120.7		i i	110.7	10801	103.6
111.5 116.3 121	12	121.2	126.1	130.8	134.6	136.1	132.7	129.3	126.5	122.4	1	1	109.9	105.4	101.5
116.3	121	20	126.1	130.8	134.6	136.1	132.7	129.3	126.5	122.4	118.0	113.7	109.5	10501	101.5
116.4	27		124.3	127.6	130.0	130.5	126.5	123.9	123.5	120.7	117.5	ĺ	110.7	107.2	103.9
115.	112	٠ س	120.4	122.4	123.6	123.8	123.0	121.6	120.0	116.2	116.1	Į	111.1	100	105.6
~ -	===	* 4	115.0	116.2		17	116.6	116.2	115.3	114.2	112.6	111.2	109.3	107.3	1 IO 1
08.9 110.5 111.9	•	_	113.0	113.9	_ 1	I			113.9	•	112.2	111.0	109.6	108.1	106.4
	İ	1				PHASE	SE (DEGREE	REES)							
-126.9 -	146	_ 1	1	-179.7	• •	157.3	149.4	143.4	139.0	135.6	133.5	132.2	131.7	132.1	133.5
165.9	162. 146.	٥۵	- 1	128.7	116.3	106.9	100.6	96.7	94.2	92.2	•	A9.3	68.7	2:	0.06
- 1	5 5	e 9	122.6 127.6	107.2	94.9	86.8	83.6	84.2	100.5	84.4	0.20	79.2	76.8	75.3	75.0
-157.5 -178.8 161.8 -130.9 -151.6 -170.6	161		144.3	128.7	116.0	108.6	111.9	124.6	130.5	127.4	120.7	113.5	107.3	102.9	10001
.7 -115.2 -1	133	1		-	æ r	~~	-176.3	-144.7	1	-150.9	-162.2	-173.1	i	170.5	165.9
-27.6	-46	~ N	- 1	-79.0			-86.8	-57.2	-54.9	-63.3	-74.6	-05.6	7 '		-106.6
74.7 53.4 34. 107.9 66.1 66.	94	0.0	16.5 48.5			-19.2	-15.9	-3.2	2.7	•	1:2:	1.	-20.5	-25.0	-27.7
٦	• =	3.7	• •	60.3		39.9	36.7	37.3	38.3	37.5	35.2	32.3	20.0	28.4	28.2
170.5 157.3 13 -143.8 174.1 16	E 4	137.0	119.1	103.8	•	82.0	75.6	71.7	69.2	67.3	65.6	9.50	63.7	63.9	65.0
-172.2	1	ļ	,	135.0	122.3	112.0	104.1	98.1	93.7	90.5	78.0	96.9	76.4	36.8	78.2

RIGH	lat	: Dr	.05	E,	4	.293		94.5	92.0	90.5	96.4	82,4	92.4	4.96	90.5	92.0			50.1 11.9	-18.2	-44.0		67.3	41.4	21.3	65.7 98.0	124.4
F PC	OR		المارز	() () () () () () () () () ()	5	.146 2		97.0	95.1	94.5	91.1	67.6	87.6 10.0	91.1	94.5	95.1	• •		47.9	-20.3	9 6	0 "	80 ^	135.9 -1	~ ^		22.2
						2 000		99.3	0.0	98.3		0.4	0.	æ 1	m	0			47.4	e -	~ 0	60 6	102.5	~		6.5	21:
					13	•		101.3	_	50	9	7.96	000	100.5		00.7	101.3		48.6	•	0.0	7.3	mo	6 2	* 0	69.7	123.0 1
					12			103.2 1	2 -	105.3	~ •	104.6	104.6	~ *	m-		~		51.5	0,	۰.	18.0	-	95.0	60	- 5	9.
					-	1.560	7 4		05.3			110.0			• •	105.3	• •			0-			•	76.4	17.2	78.9	129.6
		٠			9	1.413	O HICRO	106.0		111.4			• •	٠.,	111.4	107.2	106.0		63.3	m -	2.	35.6	~ ~	-	23.9	110.5	135.2
-		78.00	1200		3	1.267	DB RF 2	106.9	108.7	1.5	118.4	121.6	121.6	118.4	114.1	108.7	106.9	REESI	72.7	• «	-21.3		165.1	-63.6	21.8	88.3	•
		1000			LOCATIO	1.120	TTUDE.	107.5	6	116.2	122.9		128.5	120	9:	100	7 -	ISE (DEG	65.0	~ ~		• •	137.9	7 ' '	19.0	96.1	153.8
		3500			AXIAL	.973	SURF AMPL	107.6		12:	125.1	132.2		125.1		110.1	2) -	PHA	100.6	20 4	• •	39.2	140.0	-88.7	27.6	4	168.4
		(H) = 2	OF FUSEL		,	.827	PRESSI	107.4	109	1	123.	129.1	129.	123.	4 .		107.		119.6	44.	16.	26.	157.	1	**	12	7
		75	EN		4	089		106.6	108	1.		123.	123.3	120	*	108	106.6		142.2			77.	176	-50.5	1	148.4	-150
	701	FUSELAGE	IM FORVARD	3.6 HZ	•	.534		105.4	1		115	911		115.1			105.4		169.3			101	-158	-27.6	68	173.9	_
	1,407	C/L FROM	PLANE FROM FOR	31	,	7967		103.8	104	155	7		7~	3 109.8	108	7-	103.8		1 -162.4		6		-133	9.2-1	115	9 -157.5	1
7	1568.0	+ •	1 -	1C 3 AT	•	, .240		5 101.8	102	701	104	103	7	104	104	102	5 101.6		0 -130.1	155]] _ `	"	25.1		2 -125,9	-62
DATA	E S		OF PROP	HARMONIC	1	\$60° -2		99.5		-			36	-			99.3		-95.0	1			1			-91.2	
ROPELIER	PROPELLER RPM	STANCE	STANCE	ROPELLER	CIPCUM.	THETA		9 165.00	145		7-	1	1		25	5	1 -15.00		9 165.00	17.	1	7~	65	65.00			
4	2.5	10	2 2	d	3	_		1	17	4 5:	===	7=:	969	1	23	2-			19		42:	===	7=:	90,	-	10.	

NUMBER DE			1														ام.	
PROPELLER BLADE PAS	R PR	EREQUENCY	1.0 ICY (HZ)	•	104.5									- 1		29	** m n	
DISTAN	DISTANCE OF PROPELLER C/L FROM FUSELAGE Angle between vertical and line from Pr	PFLLER ERTICA	C/L FROM	ROP FI	USELAGI	E C/L (AGE C/L (M) =	2.3500 GF C/1	(DEGREFS)	•	75.00					,		
DISTANCE	CE OF PRO	PROPELLER	PLANE	FRON	FORWAI	FORWARD END	OF FUS	LAGE		12		•				F		
PROPELLER	LER HARMONIC	9 DING	AT	418.1	2 H											15		
CIRCUM.	× × ×		2		•	•	•	AKIAL	L LOCATION	NOI	-	=		•			:	
L THETA	• 2	• 760•	04	.387	166.	049.	. 82	1 • 1	1.12	1.2	7	13 1.56	60 1.706	-	853 2	000	2.146	2.293
							PRES	SURE AMPL	PL ITUDE,	8 0	E 20 MI	CRO PA						
19 165.00	5.00 90	6.0	3.5	95.6	97.9	99	100	100	100	66	6.89	7.96 5.	.7	26 6.	0	99.2	2.98	65.0
í				96.1	99.1	101.3	102	8 103.	1_	101	'				•	97.0	93.2	79.1
1		RP.5 9	ŀ	99.06	103.3		109	1	109		1	ĺ			4 2	4 5		75.8
				2.66	104.8	- 1	1		=======================================	109		56			4	•	•	2
13 105.00		85.2 9. 83.1 9.	92.1 90.8	90.1 98.6	105.9	112,2	117.	126.6	117.	6 1111.	.5 104.8	*	.7 92.	e e	- C	81.2 78.4	75.3	4.09
				96.1	106.9	115.6	123.	i	1 124.	ž	0 106	3	8		5	76.7	• •	63.4
-			89.7	98.1	106.90	115.6	124-	1	7	7116	ا ج د	8 8	• •		9 4	76.0	69.2	62.5
6				98.6	106.6	116.3	120	- 1	121			8			19	• •	• •	• -
00.55		85.2 92 87.2 93	- (90.2	105.9	112.2	117.	119.	117.	4 100	104.	60	.7 92	0.0	-	91.2	75.3	69.4
6				98.8	103.3	107.0	109.	l	=	-	7	5	-				8	75.0
7			3.0	97.2	900	103.8	105	106	105		38	200	98	90	5	ġ,	٦,	77.66
2 = 5	, 9	6	3.0	96.0	98.5	100.3	101.5	3	9 101.	7	9		9		0 6	88.3	96.9	81.2
1 -15.	5.00 90	e.		95.8	97.9	99.5	100.5	100.	9 100.	6 99.	96	.5 96.	10 7.	• 5	2.0 A	•	16.2	~
								•	PHASE (D	(DEGREES)								
19 165.00	-61		en 4	75.1	144.0	107.1	ż		23.	1 4.	-10		15 .	~	6.	0	49.64	-32.4
17 145.00	}		1	85.3	44.2	7.3	-25.2	-53.0	-75.	4 -01.B	101	-117	29= 6	7 = 127	•		87.5	128.8
- 1				56.3	15.8	-20.7	- 1	"	3 = 102	-120	-132	-152	? -	- F	4	4	55.4	=152.7
15 125.00	00 137.4	_	0.06	46.5	7.2	-28.2	-59.		-108	5 -125.0	-136	.9 -146.	0	.	2.	•	7	-162.4
				94.4	58.8	26.9	1	Ì	-47		-62	-75	م ا	0 -100			-117.0	-119.1
	"	- 1	7		118.1	87.3	- 1		16.	16	19	1		9		0	4	-64.6
10 75.00			11.0 -11.	-19301 -	-162.4	1001-	-	1111	77.1- 6	3 110.	9 115 2 -151	.46 4.	7 68	.2 44	1.2 26	٠, ٥	14.5	9.
				_	9.2	-20.7	'		9 -69.	-7	69-0	-9	-116		7	-	حا	-176.3
22.00	"				91.8	119	32	♬.		-	-1	•	= 63	9=	1	7	-86.5	0
4 35.00	00 -77.3	•5 -121•4 •6 -57•6		-1e1•2 -53•3 =	163.2	131.3	159.3	133.	8 57.1 0 111.8	4 6	42 7	.1 31.6 .2 78.0	~ 4	** **	٠,	4.4	-12.5	14.7
5 25.00	•				-	-122.0	-153		157.	_	129		115			3		103.0
3 5.	5.00 129.2			35.4	-5.8	-12.7	-111-2	-102.0	-101-	9 = 179	7 - 187	2 -144	8 152 671-0	167.6	201 90];	65.5	9;
1		- -		4. Z	26.6		7 7		10	112						֓֞֜֞֜֜֜֜֜֜֜֜֜֜֜֜֓֓֓֓֓֓֓֓֜֜֜֜֜֓֓֓֓֓֓֜֜֜֜֜֓֓֓֡֓֜֜֜֜֓֡֓֡֓֡֓֡֓֡֓֡֓֜֜֡֓֜֜֡֓֜֡֓		
			İ									•		•	•		,	

FOUR BLADE	DOUTY	ROTOL	Z.69 H	DIA, 15	EB RPM.	CLEAP	ANCE 0.0	6 PRNP	DIA.						PC	GIN
PROPELLER I	DATA BLADES =	•													OR	
		l	. (14)	104.5											٧٧	PA Ql
DISTANCE OF PROPELLER C/L FROM FUSELAGE C	F PROPEL	LER C/L	/L FPON F	USELAGE	1/	IN) - 2.	3500	1060000	75.00	•					,,,,,,	CE Al
DISTANCE OF	F PROPFLLER	LER PLA	NE FROM	PLANE FROM FORVARD	ENO.	E	AGE (1200							13 17
PROPELLER	HARMONTC	5 AT	522.7	2H					٠.							
CIRCUM.		,	-	•		•	AXIAL	LOCATION	2	5	=	2	-	71	=	91
	i	.240	.387	.534	.680	.827	.973	1.120	1.267	1.413	1.560	1.706	1.653	2.000	2.146	2.293
						PRESSURE		APPLITUDE,	DB RE 2	20 HICRO	V d					
19 165,00	91.0	1.40	67.9	90.5	92.4	93.7	94.2	93.0	92.9	91.2	98.9	86.2	63.0	79.4	75.6	71.4
18 155.00	28.4	84.2	87.9	90.8	93.2	04.0	न द	94.9	4 3	91.6	8 8	85.0	80.8	76.3	73.8	66.5
- 1	17.6	83.1	88.2	92.7	96.3	• •	đ	3			đ	: 4				63.6
	76.8	83.2	89.2	4.7	99.3	102.6	104.0	103.2	100.2	95.7	90.0	65.1	79.4	73.5	7	61.2
13 105.00	21.6	0.06	88.3	900	104.3	110.7	114.1	112.3	105.2	96.3	88.2	;	73.9	66.99	, .	
95	68.8	77.9	87.3	848	106.4		9	•	106.7	95.2	8	78-1	d.	63.1	55.	•
11 85.00	66.9	76.2	46.4	97.1	107.8	117.6	124.0	121.0	106.9	0.40	85.0	76.4	68.2	60 K	52.4	44.5
l	66.5	76.2	86.4	97.1	107.8	• •	٠.	•	106.9	0.40	85.3	76.4	60.2	60.3	52.4	44.5
~	71.8	43.0	69.3	9.96	104.3	• •	114.1	112.3	105.2	96.3	98.2	60.0	73.9	666.9	59.8	52.6
1	76.6	91.9	89.1	95.9	101-9	106.5	8	7	102.9	9666	•	*	12.5	•	63.0	٠
5 25.00	76.8	A3.2	70 64 60 64	94.7	66.40	102.6	104.0	103.2	1000.2	95.7	900	85.1	60	73.5	69.5	63.B
3 5.00	78.6	63.3	67.5	91.2	94.0	95.9	•	96.2	9.46	•	88.8	50	90	•		66.5
1 -15.00	80.0	84.7	87.9	90.9	93.2		4	46	92.9	91.6	88.9	85.7 R6.2	82.1 83.0	79.4	75.6	711.4
							PHA	SE (DEGR	REESI							
-	0	-128.7	174.1	•	73.6	31.2	-5.6	-36.8		-82.7	0.06-	-108.0	-115.5	-118.4	-116.0	-114.3
17 145.00	169.5	107.5	49.64	-3.2	-50.7	-93.1	-130.1	-161.2	173.7	154.3	140.1	130.4	124.7	172.4	123.5	127.6
- 1	132,3	70.5	13.4	-39.4	<u>ط</u> .	` 4 `	-163.9	3	14041	120.9	106.9	97.2		•	89.1	•
15 125.00	117.4	7.95	16.9	1.84- 1.06-	-94.1	-134.8	-170.7	156.4	157.2	137.8	122.7	110.2	1001	03.7	91.0	92.2
	168.0	112.3	+ •	17.2	-22.6	•		-122.9	-146.6	-163.1	-178.7	3	•		132.7	131
9	-12543	- 1	134.5	92.4	54.2	-	4 1	4	-60.4	-6642	-83.4	•	٠	-168.5	=158+5	-162.7
10 75.00	71.9	20.9	-151.9	-116.6	-101-0	-135.6	-168.3	164.2	167.0	178.5	150.5	112.3	79.3	3	3	37
	-174.7	132.9	87.0	46.7	10.0	•	~	-85.8	6.06-	-82.0	-107.3	-142.4	-172.4	166.7	154.0	148
7 45.00	28.5	-121.2	-77.6	-122.3	-162.1	161.5	127.8	97.6	73.9	57.4	41.8	24.9	0.0	0.1	6.9-	-7.9
	111.0	5243	- 1	-684-	-9049		-164.3	200	139.	120-1	50	•	82.6		139	47
5 25.00	-179.8	119.5		0.41	-31.3	-/1.9	6.701-	4 ° 4 € 1 -	0.401-	6.011	70701	0 1 1 6 0			1 3%	10741
1				7 - 7 9	Z0 ▲ B	-21.2	-57.R	-FR.B.	-134	-133.D	0.731-	-156.7	-162.8	-165.6	=164 eB	-160 4

	T TEST COMPARISONS & RUN	MD. 10			,
<u> </u>	MERLIN IVC Carin Lengih a 7.89 metersa euselage Trip panel: Insulation 2.1 inches pri	LENGIH = 9.27 105+LINING OF 1	METERS •95 KG/N2		
	EDUP BLADE DOWLY ROTOL: 2,69 M DIA, 1568 RPM.	CLE	ARANCESO, DA PROP DIA.		= 2
	ICHE TRANSMISSIOM AT EREOUENCIES AT OR ABOVE	630	O HZ IS WITH HIGH EREQUENCY EORMULATION		-
		***************************************	***************************************		
	n F	TH FLOOR	•		1
	+ ACOUSTIC MODES:		• •		-
	- ASSIGNED ORDER OF TN CYLTNDER CROSS-	2-DINENSIONAL MODAL PATTERN Section	+		<u> </u>
	+ + + + + + + + + + + + + + + + + + + +		* •		 -
	+ H & NO. OF ATTACHMENT AND OF	entition at a series	+ 000		
	LARGEST SHELL GEV.	DINATES FOR THIS	######################################		~
	CHISSTON EOR EREGIENCY	9			Ţ
		PUDE ETA BA	A S - D R S S S S S S S S S S S S S S S S S S		.
35-	N I O	2	(PA++2)	-	- ,
	4 65.2 3 0 6 102.4 4 102.7 5 0 11 121.3	3 2 ,00023	1.9973E-01 2.0834E-01	•	
	142.4 2 2 6	3 5	2.5007F-01 8.0130F-01		-
	108.7 5 0 6	~	6.2569E-01		_
		TOTAL - 99.90 DB	3.9111E+00	DE CONTRACTOR	- -
1	TONE TRANSHISSION FOR EREQUENCY 200	209.1 HZ. HARMONIC NO.		POC	;
	=	POOF FTA B)R	-
	- 0	Z	(PA++2)	P. Qu	
	35 219.4 4 3 39 224.7 31 215.6 1 4 38 222.5	4 2 .08632	6.9210E-02 1.2638E-01		
	210.7 3 3 23	3 2	2.5939E-01	2 Y	-
	205.1 2 3 23	3 2 .01	3.6370E-01	٠	_
		TOTAL - 96.59 DB	1.62475+00		,
I	TONE TRANSMISSION EOR EREQUENCY 313	313.6 HZ. HARMONIC NO.			
	ACRISTIC HODE STRUCTURAL	MODE ETA Re	M.S. PRESSURE		
	2	2	(PA+02)		_
	1 216 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 / AAAAE	T 1111 T		•

		2	MARKON I C. MO.		C I
3.	Tanguaga Total	WAT FORE		HASAPRESSURE	0 -
	NO.	1			
•		1	.08632	6.92106-02	
35 219.4 4 3	6. c	222.5 2	00148	1.2638 = 01	
215.6	23	3	.00523	2,5939t=01 2,6261E=01	
210	36	166.0 3 2	.01236	3,6370E-01	
2 1.502 62	2	TOTAL .	96.59 DB	1.8247E+00	
S S S S S S S S S S S S S S S S S S S	FREGIEN	313.6 HZe	HARBONIC NO.	E	
			CTA D.4 M.	M.S. PRESSURE	
ACOUSTIC MODE	N	STRUCTURAL MULE			7
	99	•		oc	
323.6	20.00	268.0 5 2		8.8729E-03	
305.6	. S	· •	00115		
PB 314.0 6 6	9	9	,02334	1,1205E-01	
2011		TOTAL .	88.06 DR	2.5558E-01	
230				5 Y	
TONE TRANSMISSION FOR EREQUENCY	EREGUE	619.1 HZs	HARMONIC NO.	•	9 -
	-	ETOIL TIPAL MODE	ETA R.C. M.	4	: 2
ACOUSTIC MODE	S	1		(PA++2)	
719 6 2	75		.00390	3.0904E-03	
. 4	98	9 6	00000	3,9299E-03	
186 420.0 3 12	2 8		94100	6.5517E=03 7.4710E=03	
417.2 2	92	407.9 3 5	- 1		
		TOTAL .	83.92 DB	70-301/8.4	
'	FREDU	ENCY 522.7 HZ.	HARBONIC NO.		
TUNE TRANSPORT	,	3003	FTA R4	M.S. PRESSURE	
NO FREG O I	NON	FREG		(PA++2)	
322 523.45 9 17	132	530.1 10 3	.00131	1,6537E-04	
522.1 4 1	141	563.9 6		3.4575E-04 3.4744E-04	
320 522.1 4 325 525.8 B	133	530.1 10		3.8636E-04	
		TOTAL .	71.02 DR	5.0524E-03	

ST BECKES ASAN	CHACKE TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR		•			-
-	A LUGEAL SUBST					7
3	- 7.89 HETERSA EIISELAGE LENGTH	FIAGE LENGTH .	1.27 HETERS			•
	TOLATION 2.1 INCH	INCHES PF105+LINING OF	-			e 0
					•	11
EDUR BLADE DOW	ENUR BLANS DOWLY ROTOLL 2.69 M DIA. 1568 RPM.	DIA 1568 RPM.	CLEARANCERO, DG PROP DIA	6 PROP DIA.		12
TOSHUNDAT BUCI	TONE TRANSHISSION AT ERFOILENCIES AT OR ABOVE	S AT DR ABOVE	630.0 HZ 15 W	0.0.HZ IS WITH HIGH ERFOLIFMEN FORMILLATION	FION	
TONE TRANSMISSTON	ON FOR PROPELLER	HARMONICS				
HARMONI	INTERIOR MEAN SO.	IN SO. PRESSURE	EXPECTED			
	00131110		١,			
	1.62476+00	96.59				
1.11	9.87406-02	83.92	70.81			
						PE 64
+2						
					-	-
					O# OF	
					‼⊘. PC	
					os or	
						•
				,		
					A	
			•			
~ -						
						.
			Market Commence of the Commenc			
					·• ·	

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
NASA CR-172428 4. Title and Subtitle		5. Report Date
Propeller Aircraft In	terior Noise Model	September 1984
Utilization Study		6. Performing Organization Code
7. Author(s)		8. Performing Organization Report No.
L.D. Pope		84-001
9. Performing Organization Name and Address L.D. Pope, Ph.D., P.E	./Consulting Engineer	10. Work Unit No.
1776 Woodstead Ct., S The Woodlands, TX 773	uite 111 80	11. Contract or Grant No. NAS1-17281
P.O. Box 7956, The Wo	odlands, TX 77387	13. Type of Report and Period Covered
2. Sponsoring Agency Name and Address		Contractor report
National Aeronautics Washington, DC 20546	and Space Administration	14. Sponsoring Agency Code

15. Supplementary Notes

Langley Technical Monitor: William H. Mayes

16. Abstract

Utilization and validation of a computer program designed for aircraft interior noise prediction is considered. The program, entitled PAIN (an acronym for Propeller Aircraft Interior Noise), permits (in theory) predictions of sound levels inside propeller driven aircraft arising from sidewall transmission. The objective of the work reported was to determine the practicality of making predictions for various airplanes and the extent of the program's capabilities. ultimate purpose was to discern the quality of predictions for tonal levels inside an aircraft occurring at the propeller blade passage frequency and its harmonics. The effort involved three tasks:

- program validation through comparisons of predictions with scale-model test results,
- 2) development of utilization schemes for large (full scale) fuselages, and
- validation through comparisons of predictions with measurements taken in flight tests on a turboprop aircraft.

Findings should enable future users of the program to efficiently

17. Key Words (Suggested by Author(s)) [18. Dis	tribution Statement		
Aircraft Interio Propeller Noise Sound Transmissi				
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages	22. Price	